Brain Tumor Identification Based on VGG-16 Architecture and CLAHE Method
DOI: http://dx.doi.org/10.30630/joiv.6.1.864
Abstract
Keywords
Full Text:
PDFReferences
I. Wahlang, P. Sharma, S. Sanyal, G. Saha, and A. K. Maji, “Deep learning techniques for classification of brain MRI,†Int. J. Intell. Syst. Technol. Appl., vol. 19, no. 6, pp. 571–588, 2020, doi: 10.1504/IJISTA.2020.112441.
H. W. Goo and Y.-S. Ra, “Advanced MRI for Pediatric Brain Tumors with Emphasis on Clinical Benefits,†Korean J. Radiol., vol. 18, no. 1, p. 194, 2017, doi: 10.3348/kjr.2017.18.1.194.
I. Wahlang, P. Sharma, S. Sanyal, G. Saha, and A. K. Maji, “Deep learning techniques for classification of brain MRI,†Int. J. Intell. Syst. Technol. Appl., vol. 19, no. 6, p. 571, 2020, doi: 10.1504/IJISTA.2020.112441.
N. H. Apriantoro and Christianni, “Analisis Perbedaan Citra MRI Brain Pada Sekuenti1se dan T1flair,†SINERGI, vol. 19, no. 3, pp. 206–210, 2015.
H. Kaur and J. Rani, “MRI brain image enhancement using Histogram Equalization techniques,†in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Mar. 2016, no. 1, pp. 770–773, doi: 10.1109/WiSPNET.2016.7566237.
V. Stimper, S. Bauer, R. Ernstorfer, B. Scholkopf, and R. P. Xian, “Multidimensional Contrast Limited Adaptive Histogram Equalization,†IEEE Access, vol. 7, pp. 165437–165447, 2019, doi: 10.1109/ACCESS.2019.2952899.
M. S. Maheshan, B. S. Harish, and N. Nagadarshan, “On the use of Image Enhancement Technique towards Robust Sclera Segmentation,†Procedia Comput. Sci., vol. 143, pp. 466–473, 2018, doi: 10.1016/j.procs.2018.10.419.
J. Ma, X. Fan, S. X. Yang, X. Zhang, and X. Zhu, “Contrast Limited Adaptive Histogram Equalization-Based Fusion in YIQ and HSI Color Spaces for Underwater Image Enhancement,†Int. J. Pattern Recognit. Artif. Intell., vol. 32, no. 07, p. 1854018, Jul. 2018, doi: 10.1142/S0218001418540186.
H. K. Buddha, J. S. Meka, and P. Choppala, “OCR Image Enhancement & Implementation by using CLAHE algorithm,†Mukt Shabd J., vol. IX, no. IV April, pp. 3595–3599, 2020.
M. Sepasian, W. Balachandran, and C. Mares, “Image Enhancement for Fingerprint Minutiae-Based Algorithms Using CLAHE, Standard Deviation Analysis and Sliding Neighborhood,†Lect. Notes Eng. Comput. Sci., vol. 2173, no. 1, pp. 1199–1203, 2008.
Erwin, R. P. Sari, G. R. Utami, and A. N. Harison, “Enhancement Citra Fundus Retina Menggunakan CLAHE dan Wiener Filter,†in Prosiding Annual Research Seminar 2018 Computer Science and ICT ISBN, 2018, vol. 4, no. 1, pp. 978–979.
P. Musa, F. Al Rafi, and M. Lamsani, “A Review: Contrast-Limited Adaptive Histogram Equalization (CLAHE) methods to help the application of face recognition,†in 2018 Third International Conference on Informatics and Computing (ICIC), Oct. 2018, no. October, pp. 1–6, doi: 10.1109/IAC.2018.8780492.
A. Elnakib, H. M. Amer, and F. E. Z. Abou-Chadi, “Early lung cancer detection using deep learning optimization,†Int. J. online Biomed. Eng., vol. 16, no. 6, pp. 82–94, 2020, doi: 10.3991/ijoe.v16i06.13657.
D. Bendarkar, P. Somase, P. Rebari, R. Paturkar, and A. Khan, “Web Based Recognition and Translation of American Sign Language with CNN and RNN,†Int. J. online Biomed. Eng., vol. 17, no. 1, pp. 34–50, 2021, doi: 10.3991/ijoe.v17i01.18585.
B. R. Nanditha, A. G. Kiran, H. S. Chandrashekar, M. S. Dinesh, and S. Murali, “An Ensemble Deep Neural Network Approach for Oral Cancer Screening,†Int. J. online Biomed. Eng., vol. 17, no. 2, pp. 121–134, 2021, doi: 10.3991/ijoe.v17i02.19207.
Mohsen H., El-Dahsan E. A., El-Horbaty E. M., and M. Salem A. “Classification using deep learning neural networks for brain tumors,†Future Computing and Informatics Journal, vol. 3, pp. 68-71, 2018.
W. S. Prakoso, I. Soesanti, and S. Wibirama, “Enhancement methods of brain MRI images: A Review,†2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE), 2020.
T. Kaur and T. K. Gandhi, “Automated Brain Image Classification based on VGG-16 and transfer learning,†2019 International Conference on Information Technology (ICIT), 2019.
M. Buda, E. A. AlBadawy, A. Saha, and M. A. Mazurowski, “Deep radiogenomics of lower-grade gliomas: Convolutional neural networks predict tumor genomic subtypes using mr images,†Radiology: Artificial Intelligence, vol. 2, no. 1, 2020.
S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C. Yankaskas, and K. E. Muller, “Contrast-limited adaptive histogram equalization: speed and effectiveness,†in [1990] Proceedings of the First Conference on Visualization in Biomedical Computing, 1990, pp. 337–345, doi: 10.1109/VBC.1990.109340.
R. M. Yanni, N. E.-K. El-Ghitany, K. Amer, A. Riad, and H. El-Bakry, “A new model for image segmentation based on Deep Learning,†International Journal of Online and Biomedical Engineering (iJOE), vol. 17, no. 07, p. 28, 2021.
S. Saifullah, “Analisis Perbandingan HE dan CLAHE pada Image Enhancement dalam Proses Segmenasi Citra untuk Deteksi Fertilitas Telur,†J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 134, Apr. 2020, doi: 10.23887/janapati.v9i1.23013.
J. Joseph, J. Sivaraman, R. Periyasamy, and V. R. Simi, “An objective method to identify optimum clip-limit and histogram specification of contrast limited adaptive histogram equalization for MR images,†Biocybernetics and Biomedical Engineering, vol. 37, no. 3, pp. 489–497, 2017.
S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi: 10.1109/TPAMI.2016.2577031.
R. Girshick, “Fast R-CNN,†in 2015 IEEE International Conference on Computer Vision (ICCV), Dec. 2015, vol. 2015 Inter, pp. 1440–1448, doi: 10.1109/ICCV.2015.169.
A. Samreen, A. M. Taha, Y. V. Reddy, and S. P, “Brain tumor detection by using Convolution Neural Network,†International Journal of Online and Biomedical Engineering (iJOE), vol. 16, no. 13, p. 58, 2020.