The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).
If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.
Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.
BibTex Citation Data :
@article{JOIV864, author = {Suci Aulia and Dadi Rahmat}, title = {Brain Tumor Identification Based on VGG-16 Architecture and CLAHE Method}, journal = {JOIV : International Journal on Informatics Visualization}, volume = {6}, number = {1}, year = {2022}, keywords = {Brain Tumor; Magnetic Resonance Imaging; CLAHE; VGG-16; deep learning.}, abstract = {Magnetic Resonance Imaging (MRI) in diagnosing brain cancers is widespread. Because of the variety of angles and clarity of anatomy, it is commonly employed. If a brain tumor is malignant or secondary, it is a high risk, leading to death. These tumors have an increased predisposition for spreading from one place to another. In detecting brain abnormality form such as a tumor, from a magnetic resonance scan, expertise and human involvement are required. Previous, the image segmentation of brain tumors is widely developed in this field. Suppose we could somehow use an automatic brain tumor detection technology to identify the presence of a tumor in the brain without requiring human intervention. In that case, it will give us a leg up in the treatment process. This research proposed two stages to identify the brain tumor in MRI; the first stage was the image enhancement process using Clip Limit Adaptive Histogram Equalization (CLAHE) to segment the brain MRI. The second one was classifying the brain tumor on MRI using Visual Geometry Group-16 Layer (VGG-16). The CLAHE was used in some instances, there were CLAHE applied in FLAIR image on green color, and CLAHE applied in Red, Green, Blue (RGB) color space. The experimental result showed the highest performance with accuracy, precision, recall, respectively 90.37%, 90.22%, 87.61%. The CLAHE method in RGB Channel and the VGG-16 model have reliably on predicted oligodendroglioma classes in RGB enhancement with precision 91.08% and recall 95.97%.}, issn = {2549-9904}, pages = {96--102}, doi = {10.30630/joiv.6.1.864}, url = {https://joiv.org/index.php/joiv/article/view/864} }
Refworks Citation Data :
@article{{JOIV}{864}, author = {Aulia, S., Rahmat, D.}, title = {Brain Tumor Identification Based on VGG-16 Architecture and CLAHE Method}, journal = {JOIV : International Journal on Informatics Visualization}, volume = {6}, number = {1}, year = {2022}, doi = {10.30630/joiv.6.1.864}, url = {} }Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
__________________________________________________________________________
JOIV : International Journal on Informatics Visualization
ISSN 2549-9610 (print) | 2549-9904 (online)
Organized by Department of Information Technology - Politeknik Negeri Padang, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W : http://joiv.org
E : joiv@pnp.ac.id, hidra@pnp.ac.id, rahmat@pnp.ac.id
View JOIV Stats
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.