Lightweight Generative Adversarial Network Fundus Image Synthesis
DOI: http://dx.doi.org/10.30630/joiv.6.1-2.924
Abstract
Keywords
Full Text:
PDFReferences
World Health Organization (WHO), “World Report on Vision,†Geneva: WHO, 2019.
Eisa Aghchehli and Malcolm Clarke, “Deep learning based data augmentation using Generative Adversarial Network in Diabetic Retinopathy: A Review,†2020, https://www.researchgate.net/profile/Eisa-Aghchehli-2/publication/339680691_DEEP_LEARNING_BASED_DATA_AUGMENTATION_USING_GENERATIVE_ADVERSARIAL_NETWORK_IN_DIABETIC_RETINOPATHY_A_REVIEW/links/5e6eaf47458515e5557fba74/DEEP-LEARNING-BASED-DATA-AUGMENTATION-USING-GENERATIVE-ADVERSARIAL-NETWORK-IN-DIABETIC-RETINOPATHY-A-REVIEW.pdf.
N. Mukherjee and S. Sengupta, “In Search for the Optimal Preprocessing Technique for Deep Learning Based Diabetic Retinopathy Stage Classication from Fundus Imagesâ€, doi: 10.21203/rs.3.rs-654484/v1.
D. S. W. Ting et al., “Artificial intelligence and deep learning in ophthalmology,†British Journal of Ophthalmology, vol. 103, no. 2. BMJ Publishing Group, pp. 167–175, Feb. 01, 2019. doi: 10.1136/bjophthalmol-2018-313173.
C.-I. Suciu, V.-I. Suciu, A. Cuţaş, and S. D. Nicoară, “Interleaved Optical Coherence Tomography: Clinical and Laboratory Biomarkers in Patients with Diabetic Macular Edema,†Journal of Personalized Medicine, vol. 12, no. 5, p. 765, May 2022, doi: 10.3390/jpm12050765.
C. Sabanayagam et al., “Association of Diabetic Retinopathy and Diabetic Kidney Disease with All-Cause and Cardiovascular Mortality in a Multiethnic Asian Population,†JAMA Network Open, vol. 2, no. 3, Mar. 2019, doi: 10.1001/jamanetworkopen.2019.1540.
S. Mishra and S. Hanchate, “Detection of Diabetic Retinopathy from Fundus Images using Deep Learning:A Review.†[Online]. Available: www.joics.net
J. Xu, C. Wan, W. Yang, B. Zheng, Z. Yan, and J. Shen, “A novel multi-modal fundus image fusion method for guiding the laser surgery of central serous chorioretinopathy,†Mathematical Biosciences and Engineering, vol. 18, no. 4, pp. 4797–4816, 2021, doi: 10.3934/mbe.2021244.
P. Cheng, L. Lin, Y. Huang, J. Lyu, and X. Tang, “I-SECRET: Importance-Guided Fundus Image Enhancement via Semi-supervised Contrastive Constraining,†in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, vol. 12908 LNCS, pp. 87–96. doi: 10.1007/978-3-030-87237-3_9.
A. D. Pérez, O. Perdomo, H. Rios, F. RodrÃguez, and F. A. González, “A Conditional Generative Adversarial Network-Based Method for Eye Fundus Image Quality Enhancement,†in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, vol. 12069 LNCS, pp. 185–194. doi: 10.1007/978-3-030-63419-3_19.
S. Sathiya Priya and J. G. R. Sathiaseelan, “Enhanced Retina Blood Vessel Segmentation by Super Resolution Generative Adversarial Networks based U-Net,†Article in Indian Journal of Science and Technology, vol. 14, no. 43, pp. 3246–3253, 2021, doi: 10.17485/IJST/v14i43.1502.
S. A. Rammy, W. Abbas, N. U. Hassan, A. Raza, and W. Zhang, “CPGAN: Conditional patch-based generative adversarial network for retinal vessel segmentation,†IET Image Processing, vol. 14, no. 6, pp. 1081–1090, May 2020, doi: 10.1049/iet-ipr.2019.1007.
P. Cheng, L. Lin, Y. Huang, J. Lyu, and X. Tang, “Prior guided fundus image quality enhancement via contrastive learning,†in Proceedings - International Symposium on Biomedical Imaging, Apr. 2021, vol. 2021-April, pp. 521–525. doi: 10.1109/ISBI48211.2021.9434005.
S. Mirabedini, M. Kangavari, and J. Mohammadzadeh, “Diabetic retinopathy classification via Generative Adversarial Networksâ€, [Online]. Available: www.isisn.org
L. Wang and A. Schaefer, “Diagnosing diabetic retinopathy from images of the eye fundus.†[Online]. Available: https://machinethink.net/blog/mobilenet-v2/
F. Lateef, M. Kas, and Y. Ruichek, “Saliency Heat-Map as Visual Attention for Autonomous Driving Using Generative Adversarial Network (GAN),†IEEE Transactions on Intelligent Transportation Systems, pp. 1–14, 2021, doi: 10.1109/TITS.2021.3053178.
S. O. Patil, V. v. Sajith Variyar, and K. P. Soman, “Speed Bump Segmentation an Application of Conditional Generative Adversarial Network for Self-driving Vehicles,†Proceedings of the 4th International Conference on Computing Methodologies and Communication, ICCMC 2020, no. Iccmc, pp. 935–939, 2020, doi: 10.1109/ICCMC48092.2020.ICCMC-000173.
J. Spooner, V. Palade, M. Cheah, S. Kanarachos, and A. Daneshkhah, “Generation of pedestrian crossing scenarios using ped-cross generative adversarial network,†Applied Sciences (Switzerland), vol. 11, no. 2, pp. 1–21, 2021, doi: 10.3390/app11020471.
B. Liu, Y. Zhu, K. Song, and A. Elgammal, “Towards Faster and Stabilized GAN Training for High-Fidelity Few Shot Image Synthesis,†in Proc.of 2021 Int. Conf. on Learning Representations (ICLR2021), 2021, pp. 1–13. [Online]. Available: https://github.com/odegeasslbc/FastGAN-pytorch
B. Bhatkalkar, A. Joshi, S. Prabhu, and S. Bhandary, “Automated fundus image quality assessment and segmentation of optic disc using convolutional neural networks,†International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 816–827, 2020, doi: 10.11591/ijece.v10i1.pp816-827.
M. AlGhamdi, “Optic Disc Segmentation in Fundus Images with Deep Learning Object Detector,†Journal of Computer Science, vol. 16, no. 5, pp. 591–600, 2020, doi: 10.3844/JCSSP.2020.591.600.
Y. Liu, D. Fu, Z. Huang, and H. Tong, “Optic disc segmentation in fundus images using adversarial training,†IET Image Processing, vol. 13, no. 2, pp. 375–381, Feb. 2019, doi: 10.1049/iet-ipr.2018.5922.
X. He, R. Luo, T. Shou, and H. Xiao, “Automatic Detection of Hard Exudates in Retinal Fundus Images,†2021. [Online]. Available: www.aaai.org
W. Setiawan, M. I. Utoyo, and R. Rulaningtyas, “Transfer learning with multiple pre-trained network for fundus classification,†Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 3, pp. 1382–1388, 2020, doi: 10.12928/TELKOMNIKA.v18i3.14868.
X. Wang, M. Xu, J. Zhang, L. Jiang, and L. Li, “Deep Multi-Task Learning for Diabetic Retinopathy Grading in Fundus Images.†[Online]. Available: www.aaai.org
Bingchen Liu, Yizhe Zhu, Kumpeng Song, and Ahmed Elgamal, “Github - Lightweight GAN, Available: https://github.com/lucidrains/lightweight-gan,†https://github.com/lucidrains/lightweight-gan, 2021.
D. M. Vo, D. M. Nguyen, T. P. Le, and S. W. Lee, “HI-GAN: A hierarchical generative adversarial network for blind denoising of real photographs,†Information Sciences, vol. 570, pp. 225–240, Sep. 2021, doi: 10.1016/j.ins.2021.04.045.
D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,†Dec. 2014, [Online]. Available: http://arxiv.org/abs/1412.6980
Ã. Arcos-GarcÃa, J. A. Ãlvarez-GarcÃa, and L. M. Soria-Morillo, “Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods,†Neural Networks, vol. 99, pp. 158–165, Mar. 2018, doi: 10.1016/j.neunet.2018.01.005.
Xuyang Guo et al., “Exploration of Automatic Mixed-Precision Search for Deep Neural Networks,†2019.