Feature-reduction Fuzzy c-means Clustering for Basketball Players Positioning
DOI: http://dx.doi.org/10.30630/joiv.5.4.651
Abstract
Keywords
Full Text:
PDFReferences
J. C. Bezdek, A Primer on Cluster Analysis: 4 Basic Methods that (usually) Work, 1st ed. Sarasota: First Edition Design Publishing, 2017.
H. R. Vignesh, Fuzzy C-mean Clustering using Data Mining, Kindle. Munich: BookRix, 2019.
K. Maheshwari and V. Sharma, “Optimization of Fuzzy C-Means Algorithm Using Feature Selection Strategies,†Adv. Intell. Syst. Comput., vol. 672, pp. 368–379, 2018.
J. Cai, J. Luo, S. Wang, and S. Yang, “Feature Selection in Machine Learning: A New Perspective,†Neurocomputing, vol. 300, pp. 70–79, Jul. 2018, doi: 10.1016/j.neucom.2017.11.077.
E. Hancer, B. Xue, and M. Zhang, “A Survey on Feature Selection Approaches for Clustering,†Artif. Intell. Rev., vol. 53, no. 6, pp. 4519–4545, 2020, doi: 10.1007/s10462-019-09800-w.
K. Mrudula, R. E. Keshava, and S. T. Hitendra, Improvements over Fuzzy Clustering Methods for Large Datasets, 1st ed. Republic of Moldova: LAP LAMBERT Academic Publishing, 2021.
M. Dousthagh, M. Nazari, A. Mosavi, S. Shamshirband, and A. T. Chronopoulos, “Feature Weighting using a Clustering Approach,†Int. J. Model. Optim., vol. 9, no. 2, pp. 2–6, 2019, doi: 10.7763/IJMO.2019.V9.686.
M. Hashemzadeh, A. Golzari Oskouei, and N. Farajzadeh, “New Fuzzy C-Means Clustering Method based on Feature-Weight and Cluster-Weight Learning,†Appl. Soft Comput. J., vol. 78, pp. 324–345, 2019, doi: 10.1016/j.asoc.2019.02.038.
M. S. Yang and Y. Nataliani, “A Feature-Reduction Fuzzy Clustering Algorithm Based on Feature-Weighted Entropy,†IEEE Trans. Fuzzy Syst., vol. 26, no. 2, pp. 817–835, 2018, doi: 10.1109/TFUZZ.2017.2692203.
M. S. Yang and K. P. Sinaga, “A Feature-Reduction Multi-view k-Means Clustering Algorithm,†IEEE Access, vol. 7, pp. 114472–114486, 2019, doi: 10.1109/ACCESS.2019.2934179.
M. S. Yang and J. B. M. Benjamin, “Feature-Weighted Possibilistic c-Means Clustering with a Feature-Reduction Framework,†IEEE Trans. Fuzzy Syst., vol. 29, no. 5, pp. 1093–1106, 2021, doi: 10.1109/TFUZZ.2020.2968879.
A. Jamal, A. Handayani, A. A. Septiandri, E. Ripmiatin, and Y. Effendi, “Dimensionality Reduction using PCA and K-Means Clustering for Breast Cancer Prediction,†Lontar Komput. J. Ilm. Teknol. Inf., vol. 9, no. 3, pp. 192–201, 2018, doi: 10.24843/lkjiti.2018.v09.i03.p08.
I. B. League, “IBL Team.†https://iblindonesia.com/profile/team.
K. Gryko, P. Stastny, A. Kopiczko, K. Mikołajec, O. Pecha, and K. Perkowski, “Can Anthropometric Variables and Maturation Predict The Playing Position in Youth Basketball Players?,†J. Hum. Kinet., vol. 69, no. 1, pp. 109–123, 2019, doi: 10.2478/hukin-2019-0005.
I. Zaric, M. Dopsaj, M. Markovic, M. Zaric, S. Jakovljevic, and D. Beric, “Body composition characteristics measured by multichannel bioimpedance in young female basketball players: Relation with match performance,†Int. J. Morphol., vol. 38, no. 2, pp. 328–335, 2020, doi: 10.4067/S0717-95022020000200328.
S. Liang and Y. Li, “Using Camshift and Kalman Algorithm to Trajectory Characteristic Matching of Basketball Players,†Complexity, 2021, doi: 10.1155/2021/4728814.
J. Pino-Ortega, C. D. Gómez-Carmona, F. Y. Nakamura, and D. Rojas-Valverde, “Setting Kinematic Parameters That Explain Youth Basketball Behavior: Influence of Relative Age Effect According to Playing Position,†J. Strength Cond. Res., vol. February, 2020, [Online]. Available: https://europepmc.org/article/med/32084109.
J. L. Russell, B. D. McLean, F. M. Impellizzeri, D. S. Strack, and A. J. Coutts, “Measuring Physical Demands in Basketball: An Explorative Systematic Review of Practices,†Sport. Med., vol. 51, no. 1, pp. 81–112, 2021, doi: 10.1007/s40279-020-01375-9.
A. Erga and Y. Nataliani, “Seleksi Fitur pada Pengelompokan Posisi Pemain Basket menggunakan Fuzzy C-Means,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 6, no. 2, pp. 77–84, 2021, doi: 10.31328/jointecs.v6i2.2346.
Š. Brodinová, P. Filzmoser, T. Ortner, C. Breiteneder, and M. Rohm, “Robust and Sparse k-Means Clustering for High-Dimensional Data,†Adv. Data Anal. Classif., vol. 13, no. 4, pp. 905–932, 2019, doi: 10.1007/s11634-019-00356-9.
A. Saha and S. Das, “Clustering of fuzzy data and simultaneous feature selection: A model selection approach,†Fuzzy Sets Syst., vol. 340, pp. 1–37, 2018, doi: 10.1016/j.fss.2017.11.015.
N. Van Pham, L. T. Pham, WitoldPedrycz, and L. T. Ngo, “Feature-Reduction Fuzzy Co-Clustering Approach for Hyper-Spectral Image Analysis,†Knowledge-Based Syst., vol. 216, p. 106549, 2021.
J. Pion, V. Segers, J. Stautemas, J. Boone, M. Lenoir, and J. G. Bourgois, “Position-Specific Performance Profiles, Using Predictive Classification Models in Senior Basketball,†Int. J. Sport. Sci. Coach., vol. 13, no. 6, pp. 1072–1080, 2018, doi: 10.1177/1747954118765054.
S. Zhang, A. Lorenzo, M. A. Gómez, N. Mateus, B. Gonçalves, and J. Sampaio, “Clustering performances in the NBA according to players’ anthropometric attributes and playing experience,†J. Sports Sci., vol. 36, no. 22, pp. 2511–2520, 2018, doi: 10.1080/02640414.2018.1466493.