Implementation 2D Lidar and Camera for detection object and distance based on RoS
DOI: http://dx.doi.org/10.30630/joiv.4.4.466
Abstract
Keywords
Full Text:
PDFReferences
G. A. Kumar, J. H. Lee, J. Hwang, J. Park, S. H. Youn, and S. Kwon, “LiDAR and camera fusion approach for object distance estimation in self-driving vehicles,†Symmetry (Basel)., vol. 12, no. 2, 2020, doi: 10.3390/sym12020324.
A. Rangesh and M. M. Trivedi, “No Blind Spots: Full-Surround Multi-Object Tracking for Autonomous Vehicles Using Cameras and LiDARs,†IEEE Trans. Intell. Veh., vol. 4, no. 4, pp. 588–599, 2019, doi: 10.1109/TIV.2019.2938110.
R. H. Rasshofer and K. Gresser, “Automotive radar and lidar systems for next generation driver assistance functions,†Adv. Radio Sci., vol. 3, pp. 205–209, 2005, doi: 10.5194/ars-3-205-2005.
Q. Li, L. Chen, M. Li, S. L. Shaw, and A. Nüchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,†IEEE Trans. Veh. Technol., vol. 63, no. 2, pp. 540–555, 2014, doi: 10.1109/TVT.2013.2281199.
H. Y. Lin, J. M. Dai, L. T. Wu, and L. Q. Chen, “A vision-based driver assistance system with forward collision and overtaking detection,†Sensors (Switzerland), vol. 20, no. 18, pp. 1–19, 2020, doi: 10.3390/s20185139.
M. M. William et al., “Traffic Signs Detection and Recognition System using Deep Learning,†Proc. - 2019 IEEE 9th Int. Conf. Intell. Comput. Inf. Syst. ICICIS 2019, pp. 160–166, 2019, doi: 10.1109/ICICIS46948.2019.9014763.
A. Mulyanto, R. I. Borman, P. Prasetyawan, W. Jatmiko, and P. Mursanto, “Real-Time Human Detection and Tracking Using Two Sequential Frames for Advanced Driver Assistance System,†2019, doi: 10.1109/ICICoS48119.2019.8982396.
C. W. Lai, H. Y. Lin, and W. L. Tai, “Vision based ADAS for forward vehicle detection using convolutional neural networks and motion tracking,†VEHITS 2019 - Proc. 5th Int. Conf. Veh. Technol. Intell. Transp. Syst., pp. 297–304, 2019, doi: 10.5220/0007626902970304.
A. Ziebinski, R. Cupek, D. Grzechca, and L. Chruszczyk, “Review of advanced driver assistance systems (ADAS),†AIP Conf. Proc., vol. 1906, no. November, 2017, doi: 10.1063/1.5012394.
X. Zhao Pengpeng Sun Zhigang Xu Haigen Min Hongkai Yu, “Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications,†2020, [Online]. Available: https://scholarworks.utrgv.edu/cs_fac/22.
F. Zhang, D. Clarke, and A. Knoll, “Vehicle detection based on LiDAR and camera fusion,†2014 17th IEEE Int. Conf. Intell. Transp. Syst. ITSC 2014, pp. 1620–1625, 2014, doi: 10.1109/ITSC.2014.6957925.
P. Wei, L. Cagle, T. Reza, J. Ball, and J. Gafford, “LiDAR and camera detection fusion in a real-time industrial multi-sensor collision avoidance system,†Electron., vol. 7, no. 6, 2018, doi: 10.3390/electronics7060084.
S. Gatesichapakorn, J. Takamatsu, and M. Ruchanurucks, “ROS based Autonomous Mobile Robot Navigation using 2D LiDAR and RGB-D Camera,†2019 1st Int. Symp. Instrumentation, Control. Artif. Intell. Robot. ICA-SYMP 2019, pp. 151–154, 2019, doi: 10.1109/ICA-SYMP.2019.8645984.
L. Zhou and Z. Deng, “A new algorithm for the extrinsic calibration of a 2D LIDAR and a camera,†Meas. Sci. Technol., vol. 25, no. 6, 2014, doi: 10.1088/0957-0233/25/6/065107.
W. Dong and V. Isler, “A novel method for the extrinsic calibration of a 2D laser rangefinder and a camera,†IEEE Sens. J., vol. 18, no. 10, pp. 4200–4211, 2018, doi: 10.1109/JSEN.2018.2819082.
M. J. J. Paul Viola, “Robust Real-Time Face Detection,†Int. J. Comput. Vis., vol. 57, no. 2, pp. 137–154, 2004, doi: 10.1112/jlms/s2-30.3.419.
R. Rai, S. Shukla, and B. Singh, “Histograms of Oriented Gradients for Human Detection,†in IEEE Computer Vision and Pattern Recognition, 2005, 2005, vol. 1, no. CVPR 2005, pp. 886–893, doi: 10.1109/TII.2019.2950094.
P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade object detection with deformable part models,†in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Francisco, 2010, pp. 2241–2248, doi: 10.1109/CVPR.2010.5539906.
Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A Survey,†pp. 1–39, May 2019, [Online]. Available: http://arxiv.org/abs/1905.05055.
R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,†in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587, doi: 10.1109/CVPR.2014.81.
K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,†in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, vol. 37, no. 9, pp. 1904–1916, doi: 10.1007/978-3-319-10578-9_23.
R. Girshick, “Fast R-CNN,†Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, pp. 1440–1448, 2015, doi: 10.1109/ICCV.2015.169.
S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017, doi: 10.1109/TPAMI.2016.2577031.
T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,†in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 936–944, doi: 10.1109/CVPR.2017.106.
K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,†in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2980–2988, doi: 10.1109/ICCV.2017.322.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,†Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.
J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,†Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 6517–6525, 2017, doi: 10.1109/CVPR.2017.690.
J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,†arXiv Prepr. arXiv1804.02767, 2018.
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,†2020, [Online]. Available: http://arxiv.org/abs/2004.10934.
W. Liu et al., “SSD: Single Shot MultiBox Detector,†in European Conference on Computer Vision – ECCV 2016, 2016, vol. 9905, pp. 21–37, doi: 10.1007/978-3-319-46448-0.
T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object Detection,†Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-Octob, pp. 2999–3007, 2017, doi: 10.1109/ICCV.2017.324.
P. Soviany and R. T. Ionescu, “Optimizing the trade-off between single-stage and two-stage deep object detectors using image difficulty prediction,†Proc. - 2018 20th Int. Symp. Symb. Numer. Algorithms Sci. Comput. SYNASC 2018, pp. 209–214, 2018, doi: 10.1109/SYNASC.2018.00041.
“ROS.org | About ROS.†https://www.ros.org/about-ros/ (accessed Oct. 27, 2020).
M. Amy et al., “Towards Adaptive Fault Tolerance on ROS for Advanced Driver Assistance Systems To cite this version : HAL Id : hal-01707514 Towards Adaptive Fault Tolerance on ROS for Advanced Driver Assistance Systems,†2018.
J. Lussereau et al., “In-tegration of ADAS algorithm in a Vehicle Prototype,†IEEE Int. Work. Adv. Robot. its Soc. Impacts ARSO, 2015.
“SSD-Mobilenet-v2.†https://nvidia.box.com/shared/static/jcdewxep8vamzm71zajcovza938lygre.gz.
“Open Images Dataset V6.†https://storage.googleapis.com/openimages/web/visualizer/index.html?set=train&type=detection&c=%2Fm%2F0k4j (accessed Nov. 20, 2020).
“-.†https://raw.githubusercontent.com/dusty-nv/jetson-inference/dev/docs/images/pytorch-ssd-mobilenet.jpg.
“GitHub - robopeak/rplidar_ros.†https://github.com/robopeak/rplidar_ros (accessed Nov. 20, 2020).