The Comprehensive Mamdani Inference to Support Scholarship Grantee Decision
DOI: http://dx.doi.org/10.30630/joiv.5.2.449
Abstract
Keywords
Full Text:
PDFReferences
P. Georgieva, “Fuzzy Rule-Based Systems for Decision-Making,†no. May 2016, 2018.
S. D. A. N. Sbmptn, “Panduan pendaftaran beasiswa bidikmisi 2019,†2019.
E. Turban, J. E. Aronson, and T.-P. Liang, “Decision Support Systems and Business Intelligence,†Decis. Support Bus. Intell. Syst. 7/E, pp. 1–35, 2007, doi: 10.1017/CBO9781107415324.004.
S. G. Fashoto, O. Amaonwu, and A. Afolorunsho, “Development of A Decision Support System on Employee Performance Appraisal using AHP Model,†JOIV Int. J. Informatics Vis., vol. 2, no. 4, p. 262, 2018, doi: 10.30630/joiv.2.4.160.
Z. T. Al-Ars and A. Al-Bakry, “A web/mobile decision support system to improve medical diagnosis using a combination of K-mean and fuzzy logic,†Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 6, pp. 3145–3154, 2019, doi: 10.12928/TELKOMNIKA.v17i6.12715.
C. B. M. T. Xyz, “Funding Eligibility Decision Support System Using Fuzzy Logic Tsukamoto,†no. March 2018, 2017, doi: 10.1109/IAC.2017.8280622.
M. Blej and M. Azizi, “Comparison of Mamdani-type and Sugeno-type fuzzy inference systems for fuzzy real time scheduling,†Int. J. Appl. Eng. Res., vol. 11, no. 22, 2016.
A. Hidayat and D. Putra, “Temperature and Soil Control Design with Fuzzy Method in Greenhouse for Cabe Seeding,†vol. 3, pp. 243–247.
M. N. Shodiq, D. H. Kusuma, M. G. Rifqi, A. R. Barakbah, and T. Harsono, “Adaptive Neural Fuzzy Inference System and Automatic Clustering for Earthquake Prediction in Indonesia,†JOIV Int. J. Informatics Vis., vol. 3, no. 1, pp. 47–53, 2019, doi: 10.30630/joiv.3.1.204.
T. Tung Khuat and M. H. Le, “An Application of Artificial Neural Networks and Fuzzy Logic on the Stock Price Prediction Problem,†JOIV Int. J. Informatics Vis., vol. 1, no. 2, p. 40, 2017, doi: 10.30630/joiv.1.2.20.
J. M. Mendel, “Introduction to Type-2 Fuzzy Sets and Systems I . Type-2 Fuzzy Sets Especially Interval Type-2 Fuzzy Sets What is a T2 FS and How is it Different From a T1 FS ?â€
W. Mendes, “Comparison of Fuzzy Type-2 and Conventional Fuzzy Controllers Tuned by Ant Colony Optimization,†no. January 2017, doi: 10.26678/ABCM.COBEM2017.COB17-1934.
I. Rahmayuni, “Tuning Parameters On Fuzzy Inference Based Decision Support System,†2018 Int. Conf. Appl. Sci. Technol., pp. 35–38, 2018, doi: 10.1109/iCAST1.2018.8751539.
J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. 1997.
L. A. Zadeh, “Fuzzy Logic,†Computer (Long. Beach. Calif)., vol. 21, no. 4, pp. 83–93, 1988, doi: 10.1109/2.53.
P. N. Padang, “Determining the Appropiate Cluster Number Using Elbow Method for K-Means Algorithm,†2018, doi: 10.4108/eai.24-1-2018.2292388.
T. M. Kodinariya and P. R. Makwana, “Review on determining number of Cluster in K-Means Clustering,†Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 1, no. 6, pp. 2321–7782, 2013.
K. P. Chiao, “The multi-criteria group decision making methodology using type 2 fuzzy linguistic judgments,†Appl. Soft Comput. J., vol. 49, 2016, doi: 10.1016/j.asoc.2016.07.050.
P. N. Padang, P. N. Padang, and P. N. Padang, “Designing Mamdani Fuzzy Inference Systems for Decision Support Systems,†no. 1, pp. 111–115, 2019.
F. Gorunescu, Data Mining concepts, Models and Techniques. Springer, 2011.