Visual Analysis of Correlation Between Diseases Evolution and Human Dynamics

Lanyun Zhang - Southwest University of Science and Technology, Mianyang, China
Hongyu Jiang - Hosei University, Koganei Kajinocho, Tokyo, Japan
Weixin Zhao - Southwest University of Science and Technology, Mianyang, China


Citation Format:



DOI: http://dx.doi.org/10.30630/joiv.3.2-2.279

Abstract


With the urbanization and the increasing pervasiveness of medical system, the systems utilizing digital technologies for their operation generates enormous amounts of digital traces capable of reflecting in real-time human behaviors and health situation in the city. It is not only transforming how we study the urbanization effect on disease’s emergence and spread in cities but opens up new possibilities for tools that give people access to up-to-date information about urban dynamics the situation of diseases. Moreover, it was allowing us to make decisions that are more in sync with their environment. This paper introduces a prototype for exploring the dynamic of diseases-urbanization and supports urban planner meaningful access to large amounts of data capable of informing their decisions. We describe the technology context in this project, illustrate the requirements and the architecture of the platform to serve as a base for monitoring the health situation of the city. Finally, we shows the validity and practicability of the system by using real data in M city, China, which including electronic medical record, cellular network data, public transport, Census data.

Keywords


Visual Analysis; Healthcare; Urbanization; Correlation Analysis

Full Text:

PDF

References


S. Knobler, A. A. Mahmoud, S. M. Lemon, et al., The impact of globalization on infectious disease emergence and control: exploring the consequences and opportunities: workshop summary, Joseph Henry Pr, 2006.

U. Nations, World urbanization prospects: The 2014 revision, highlights. department of economic and social affairs, Population Division, United Nations.

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, P. Daszak, Global trends in emerging infectious diseases, Nature 451 (7181) (2008) 990–993.

C. A. Bradley, S. Altizer, Urbanization and the ecology of wildlife diseases, Trends in ecology & evolution 22 (2) (2007) 95–102.

E. Alirol, L. Getaz, B. Stoll, F. Chappuis, L. Loutan, Urbanisation and infectious diseases in a globalised world, The Lancet infectious diseases 11 (2) (2011) 131–141.

Y. Zheng, L. Capra, O. Wolfson, H. Yang, Urban computing: concepts, methodologies, and applications, ACM Transactions on Intelligent Systems and Technology (TIST) 5 (3) (2014) 38.

K. Kloeckl, O. Senn, C. Ratti, Enabling the real-time city: Live singapore!, Journal of Urban Technology 19 (2) (2012) 89–112.

F. Miranda, H. Doraiswamy, M. Lage, K. Zhao, B. Gonc¸alves, L. Wilson, M. Hsieh, C. T. Silva, Urban pulse: Capturing the rhythm of cities, IEEE transactions on visualization and computer graphics 23 (1) (2017) 791–800.

J. M. Hassell, M. Begon, M. J. Ward, E. M. Fe`vre, Urbanization and disease emergence: Dynamics at the wildlife– livestock–human interface, Trends in ecology & evolution 32 (1) (2017) 55–67.

J. Candia, M. C. Gonza´lez, P. Wang, T. Schoenharl, G. Madey, A.-L. Baraba´si, Uncovering individual and collective human dynamics from mobile phone records, Journal of physics A: mathematical and theoretical 41 (22) (2008) 224015.

W. Wu, J. Xu, H. Zeng, Y. Zheng, H. Qu, B. Ni, M. Yuan, L. M. Ni, Telcovis: Visual exploration of co-occurrence in urban human mobility based on telco data, IEEE transactions on visualization and computer graphics 22 (1) (2016) 935–944.

H. Jiang, Y. Wu, Y. Zhang, S. Wang, Y. Zhang, From social community to spatio-temporal information: A new method for mobile data exploration, Journal of Visual Languages & Computing 41 (2017) 1–11.

L. Lins, M. Heilbrun, J. Freire, C. Silva, Viscaretrails: Visualizing trails in the electronic health record with timed word trees, a pancreas cancer use case, in: Proc. IEEE Visual Analytics in Health Care (VAHC) Workshop, 2011.

T. Gschwandtner, W. Aigner, K. Kaiser, S. Miksch, A. Seyfang, Carecruiser: exploring and visualizing plans, events, and effects interactively, in: Pacific Visualization Symposium (PacificVis), 2011 IEEE, IEEE, 2011, pp. 43–50.

Z. Zhang, B. Wang, F. Ahmed, I. Ramakrishnan, R. Zhao, Viccellio, K. Mueller, The five Ws for information visualization with application to healthcare informatics, IEEE transactions on visualization and computer graphics 19 (11) (2013) 1895–1910.

M. H. Loorak, C. Perin, N. Kamal, M. Hill, S. Carpendale, Timespan: Using visualization to explore temporal multi- dimensional data of stroke patients, IEEE transactions on visualization and computer graphics 22 (1) (2016) 409–418.

A. Faiola, S. Hillier, Multivariate relational visualization of complex clinical datasets in a critical care setting: A data visualization interactive prototype, in: Information Visualization, 2006. IV 2006. Tenth International Conference on, IEEE, 2006, pp. 460–468.

A. Rind, S. Miksch, W. Aigner, T. Turic, M. Pohl, Visuexplore: Gaining new medical insights from visual exploration, in: International Workshop on Interactive Systems in Healthcare, 2010.

R. Kosara, S. Miksch, Visualization techniques for time- oriented, skeletal plans in medical therapy planning, Artificial Intelligence in Medicine (1999) 291–300.

R. Bade, S. Schlechtweg, S. Miksch, Connecting time- oriented data and information to a coherent interactive visualization, in: Proceedings of the SIGCHI conference on Human factors in computing systems, ACM, 2004, pp. 105– 112.

W. Aigner, S. Miksch, W. Mu¨ller, H. Schumann, C. Tomin- ski, Visual methods for analyzing time-oriented data, IEEE transactions on visualization and computer graphics 14 (1) (2008) 47–60.

W. Horn, C. Popow, L. Unterasinger, et al., Support for fast comprehension of ICU data: Visualization using metaphor graphics, Methods Archive 40 (5) (2001) 421–424.

S. Salvador, P. Chan, Toward accurate dynamic time warp- ing in linear time and space, Intelligent Data Analysis 11 (5) (2007) 561–580.

G. Niemeyer, Geohash, http://geohash.org, accessed: 2017-07-22 (2008).

X. Wang, D. Gao, J. Wang, Influence of human behavior on cholera dynamics, Mathematical biosciences 267 (2015) 41–52.

D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel, Nature 439 (7075) (2006) 462.

M. C. Gonzalez, C. A. Hidalgo, A.-L. Barabasi, Under- standing individual human mobility patterns, arXiv preprint arXiv:0806.1256.

L. Pappalardo, S. Rinzivillo, Z. Qu, D. Pedreschi, F. Giannotti, Understanding the patterns of car travel, The Euro- pean Physical Journal Special Topics 215 (1) (2013) 61–73.

C. Song, Z. Qu, N. Blumm, A.-L. Baraba´si, Limits of pre- dictability in human mobility, Science 327 (5968) (2010) 1018–1021.

C. Nicolaides, L. Cueto-Felgueroso, M. C. Gonzalez, R. Juanes, A metric of influential spreading during contagion dynamics through the air transportation network, PloS one 7 (7) (2012) e40961.

V. Belik, T. Geisel, D. Brockmann, Natural human mobility patterns and spatial spread of infectious diseases, Physical Review X 1 (1) (2011) 011001.

W. H. Organization, The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diag- nostic guidelines, Vol. 1, World Health Organization, 1992.

J. Shang, Y. Zheng, W. Tong, E. Chang, Y. Yu, Inferring gas consumption and pollution emission of vehicles throughout a city, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2014, pp. 1027–1036