Grey Level Differences Matrix for Alcoholic EEG Signal Classification
DOI: http://dx.doi.org/10.62527/joiv.8.1.2602
Abstract
Keywords
Full Text:
PDFReferences
J. Rehm, “The risks associated with alcohol use and alcoholism,” Alcohol Res Health, vol. 34, no. 2, pp. 135–143, 2011.
I. Wijayanto, A. Rizal, and A. Humairani, “Seizure Detection Based on EEG Signals Using Katz Fractal and SVM Classifiers,” in 2019 5th International Conference on Science in Information Technology (ICSITech), IEEE, Oct. 2019, pp. 78–82. doi: 10.1109/ICSITech46713.2019.8987487.
S. Hadiyoso, L. F. A. R. Cynthia, T. L. E. R. Mengko, and H. Zakaria, “Early Detection of Mild Cognitive Impairment Using Quantitative Analysis of EEG Signals,” in 2019 2nd International Conference on Bioinformatics, Biotechnology and Biomedical Engineering (BioMIC) - Bioinformatics and Biomedical Engineering, 2019, pp. 1–5. doi: 10.1109/BioMIC48413.2019.9034892.
A. K. Mutasim, R. S. Tipu, M. R. Bashar, Md. K. Islam, and M. A. Amin, “Computational Intelligence for Pattern Recognition in EEG Signals,” 2018, pp. 291–320. doi: 10.1007/978-3-319-89629-8_11.
T. K. Padma Shri and N. Sriraam, “Spectral entropy feature subset selection using SEPCOR to detect alcoholic impact on gamma sub band visual event related potentials of multichannel electroencephalograms (EEG),” Applied Soft Computing Journal, 2016, doi: 10.1016/j.asoc.2016.04.041.
J. Gopika Gopan, K., Sinha, N., Dinesh Babu, “Hybrid features based classification of alcoholic and non-alcoholic EEG,” in 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2015, pp. 1–6. doi: 10.1109/CONECCT.2015.7383898.
P. D. Purnamasari, A. A. P. Ratna, and B. Kusumoputro, “Relative wavelet bispectrum feature for alcoholic EEG signal classification using artificial neural network,” in QiR 2017 - 2017 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, 2017. doi: 10.1109/QIR.2017.8168473.
M. Saddam, H. Tjandrasa, and D. A. Navastara, “Classification of alcoholic EEG using wavelet packet decomposition, principal component analysis, and combination of genetic algorithm and neural network,” Proceedings of the 11th International Conference on Information and Communication Technology and System, ICTS 2017, vol. 2018-Janua, no. 0, pp. 19–24, 2018, doi: 10.1109/ICTS.2017.8265600.
C. Ekaputri, R. Widadi, and A. Rizal, “EEG Signal Classification for Alcoholic and Non-Alcoholic Person using Multilevel Wavelet Packet Entropy and Support Vector Machine,” in 2020 8th International Conference on Information and Communication Technology (ICoICT), IEEE, Jun. 2020, pp. 1–4. doi: 10.1109/ICoICT49345.2020.9166233.
R. Palaniappan and P. Raveendran, “Genetic algorithm to select features for fuzzy ARTMAP classification of evoked EEG,” in IEEE Asia-Pacific Conference on Circuits and Systems, Proceedings, APCCAS, 2002. doi: 10.1109/APCCAS.2002.1115119.
A. K. Mutasim, R. S. Tipu, M. R. Bashar, M. K. Islam, and M. A. Amin, “Computational Intelligence for Pattern Recognition in EEG Signals,” in Studies in Computational Intelligence, vol. 777, no. May, Springer International Publishing, 2018, pp. 291–320. doi: 10.1007/978-3-319-89629-8_11.
R. Widadi, I. Soesanti, and O. Wahyunggoro, “EEG Classification Using Elliptic Filter and Multilayer Perceptron Based on Gamma Activity Features,” in Proceedings - 2018 4th International Conference on Science and Technology, ICST 2018, IEEE, Aug. 2018, pp. 1–5. doi: 10.1109/ICSTC.2018.8528568.
J. S. Weszka, C. R. Dyer, and A. Rosenfeld, “A Comparative Study of Texture Measures for Terrain Classification,” Systems, Man and Cybernetics, IEEE Transactions on, vol. SMC-6, no. 2, pp. 269–285, 1976.
X. L. Zhang, H. Begleiter, B. Porjesz, W. Wang, and A. Litke, “Event related potentials during object recognition tasks,” Brain Res Bull, vol. 38, no. 6, pp. 531–538, 1995, doi: 10.1016/0361-9230(95)02023-5.
A. Rizal, V. A. P. Handzah, and P. D. Kusuma, “Heart Sounds Classification Using Short-Time Fourier Transform and Gray Level Difference Method,” Ingénierie des systèmes d information, vol. 27, no. 3, pp. 369–376, Jun. 2022, doi: 10.18280/isi.270302.
A. A. Goshtasby, Image Registration. in Advances in Pattern Recognition. London: Springer London, 2012. doi: 10.1007/978-1-4471-2458-0.
D. T. Barus, F. Masri, and A. Rizal, “NGBoost Interpretation Using LIME for Alcoholic EEG Signal Based on GLDM Feature Extraction,” Advances in Intelligent Systems and Computing, vol. 1294, pp. 894–904, 2020, doi: 10.1007/978-3-030-63322-6_76.
C. Cortes and V. Vapnik, “Support vector machine,” Mach Learn, pp. 1303–1308, 1995, doi: 10.1007/978-0-387-73003-5_299.
G. Durif, L. Modolo, J. Michaelsson, J. E. Mold, S. Lambert-Lacroix, and F. Picard, “High dimensional classification with combined adaptive sparse PLS and logistic regression,” Bioinformatics, vol. 34, no. 3, pp. 485–493, 2018, doi: 10.1093/bioinformatics/btx571.
M. T. Viega, E. Marvin, R. Jayadi, and T. Mauritsius, “Heart disease prediction system using data mining classification techniques: Naïve bayes, knn, and decision tree,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 3, pp. 3028–3035, 2020, doi: 10.30534/ijatcse/2020/82932020.
R. Rahim, T. Afriliansyah, H. Winata, D. Nofriansyah, Ratnadewi, and S. Aryza, “Research of Face Recognition with Fisher Linear Discriminant,” IOP Conf Ser Mater Sci Eng, vol. 300, no. 1, 2018, doi: 10.1088/1757-899X/300/1/012037.
A. Rizal, R. Hidayat, and H. A. A. Nugroho, “Hjorth Descriptor Measurement on Multidistance Signal Level Difference for Lung Sound Classification,” Journal of Telecommunication Electronic and Computer Engineering, vol. 9, no. 2, pp. 23–27, 2017