433Mhz based Robot using PID (Proportional Integral Derivative) for Precise Facing Direction

Mokhamad Hariyadi - UIN Maulana Malik Ibrahim Malang, Malang, 65144, Indonesia
Juniardi Fadila - UIN Maulana Malik Ibrahim Malang, Malang, 65144, Indonesia
Hafizzudin Sifaulloh - UIN Maulana Malik Ibrahim Malang, Malang, 65144, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.30630/joiv.7.3.1841


This research endeavor aims to evaluate the effectiveness of the robot's direction control system by employing PID (Proportional Integral Derivative) output and utilizing wireless communication LoRa E32 433MHz. The experimental robot used in this study was a tank model robot equipped with 4 channels of control. LoRa was implemented in the robot control system, in conjunction with an Android control application, through serial data communication. The LoRa E32 module system was selected based on its established reliability in long-range communication applications. However, encountered challenges included the sluggishness of data transmission when using LoRa for transferring control data and the decreased performance of the robot under Non-Line of Sight conditions. To overcome these challenges, the PID method was employed to generate control data for the robot, thereby minimizing the error associated with controlling its movements. The PID system utilized feedback from a compass sensor (HMC5883L) to evaluate the setpoint data transmitted by the user, employing Kp, Ki, and Kd in calculations to enable smooth movements toward the setpoint. The findings of this study regarding the direct control of the robot using wireless LoRa E32 communication demonstrated an error range of 0.6% to 13.34%. A trial-and-error approach for control variables determined the optimal values for Kp, Ki, and Kd as 10, 0.1, and 1.5, respectively. Future investigations can integrate additional methodologies to precisely and accurately determine the PID constants (Kp, Ki, and Kd) mathematically.


Control System; LoRa E32 433MHz; PID

Full Text:



A. Latif, K. Shankar, and P. T. Nguyen, “Legged fire fighter robot movement using PID,†Journal of Robotics and Control (JRC), vol. 1, no. 1, 2020, doi: 10.18196/jrc.1104.

A. Habibi and R. T. S. Haryati, “Artificial Intellegence in Nursing : A Literatur Riview,†JKFT: Universitas Muhamadiyah Tangerang Vol., vol. 6, no. 2, 2021.

P. Huang, Z. Zhang, and X. Luo, “Feedforward-plus-proportional–integral–derivative controller for agricultural robot turning in headland,†Int J Adv Robot Syst, vol. 17, no. 1, 2020, doi: 10.1177/1729881419897678.

I. Barus, D. A. Prasetya, and N. Rochman, “Optimasi Realtime Control System Pada Navigasi Mobile Robot,†Prosiding SNATIF, 2017.

W. Purbowaskito and C.-H. Hsu, “Sistem Kendali PID untuk Pengendalian Kecepatan Motor Penggerak Unmanned Ground Vehicle untuk Aplikasi Industri Pertanian,†Jurnal Infotel, vol. 9, no. 4, 2017.

E. A. Chater, H. Housny, and H. El Fadil, “Adaptive proportional integral derivative deep feedforward network for quadrotor trajectory-tracking flight control,†International Journal of Electrical and Computer Engineering, vol. 12, no. 4, 2022, doi: 10.11591/ijece.v12i4.pp3607-3619.

M. Lamatenggo, I. Wiranto, and W. Ridwan, “Perancangan Balancing Robot Beroda Dua Dengan Metode Pengendali PID Berbasis Arduino Nano,†Jambura Journal of Electrical and Electronics Engineering, vol. 2, no. 2, 2020, doi: 10.37905/jjeee.v2i2.6906.

S. J. Hammoodi, K. S. Flayyih, and A. R. Hamad, “Design and implementation speed control system of DC motor based on PID control and matlab simulink,†International Journal of Power Electronics and Drive Systems, vol. 11, no. 1, 2020, doi: 10.11591/ijpeds.v11.i1.pp127-134.

I. P. Adinata, M. Pratama, I. N. Suweden, and I. B. A. Swamardika, “Sistem Kontrol Pergerakan Pada Robot Line Follower Berbasis Hybrid PID-Fuzzy Logic,†Prosiding Conference on Smart-Green Technology in Electrical and Information Systems, no. November, 2013.

R. Dikairono, T. A. Sardjono, and L. Yulianto, “Sistem Navigasi Dan Penghindar Rintangan Pada Mobile Robot Menggunakan Gps Dan Pengukur Jarak Ultrasonik,†JAVA Journal of Electrical and Electronics Engineering, vol. 11, no. 1, 2016.

J. M. Sole, R. P. Centelles, F. Freitag, and R. Meseguer, “Implementation of a LoRa Mesh Library,†IEEE Access, vol. 10, 2022, doi: 10.1109/ACCESS.2022.3217215.

A. S. Milewski, Å. Mierzejewski, and J. ToÅ‚stoj-Sienkiewicz, “Differential control of six-wheeled robot using a mobile application,†in Solid State Phenomena, 2017. doi: 10.4028/www.scientific.net/SSP.260.45.

J. N. Fadila, “Improving UAV Radio Control System with 433 MHz Radio Wave Using Lo-Ra based on QCZEK Model Communication System,†MATICS, vol. 14, no. 1, 2022, doi: 10.18860/mat.v14i1.16370.

H. Maghfiroh, M. Ahmad, A. Ramelan, and F. Adriyanto, “Fuzzy-PID in BLDC Motor Speed Control Using MATLAB/Simulink,†Journal of Robotics and Control (JRC), vol. 3, no. 1, 2022, doi: 10.18196/jrc.v3i1.10964.

A. Riansyah, S. Mulyono, and M. Roichani, “Applying fuzzy proportional integral derivative on internet of things for figs greenhouse,†IAES International Journal of Artificial Intelligence, vol. 10, no. 3, pp. 536–544, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp536-544.

A. M. Abed et al., “Trajectory tracking of differential drive mobile robots using fractional-order proportional-integral-derivative controller design tuned by an enhanced fruit fly optimization,†Measurement and Control (United Kingdom), vol. 55, no. 3–4, 2022, doi: 10.1177/00202940221092134.

M. Fliess and C. Join, “An alternative to proportional-integral and proportional-integral-derivative regulators: Intelligent proportional-derivative regulators,†International Journal of Robust and Nonlinear Control, vol. 32, no. 18, 2022, doi: 10.1002/rnc.5657.

O. A. Saraereh, A. Alsaraira, I. Khan, and P. Uthansakul, “Performance evaluation of UAV-enabled LoRa networks for disaster management applications,†Sensors (Switzerland), vol. 20, no. 8, 2020, doi: 10.3390/s20082396.

J. P. Shanmuga Sundaram, W. Du, and Z. Zhao, “A Survey on LoRa Networking: Research Problems, Current Solutions, and Open Issues,†IEEE Communications Surveys and Tutorials, vol. 22, no. 1, 2020, doi: 10.1109/COMST.2019.2949598.

R. Liang, L. Zhao, and P. Wang, “Performance evaluations of lora wireless communication in building environments,†Sensors (Switzerland), vol. 20, no. 14, 2020, doi: 10.3390/s20143828.

C. Bouras, A. Gkamas, and S. A. K. Salgado, “Energy efficient mechanism for LoRa networks,†Internet of Things (Netherlands), vol. 13, 2021, doi: 10.1016/j.iot.2021.100360.

R. Islam, M. W. Rahman, R. Rubaiat, M. M. Hasan, M. M. Reza, and M. M. Rahman, “LoRa and server-based home automation using the internet of things (IoT),†Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, 2022, doi: 10.1016/j.jksuci.2020.12.020.

A. J. Wixted, P. Kinnaird, H. Larijani, A. Tait, A. Ahmadinia, and N. Strachan, “Evaluation of LoRa and LoRaWAN for wireless sensor networks,†in Proceedings of IEEE Sensors, 2017. doi: 10.1109/ICSENS.2016.7808712.

Q. Zhou, K. Zheng, L. Hou, J. Xing, and R. Xu, “Design and implementation of open LORa for IoT,†IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2930243.

A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of Lora: Long range & low power networks for the internet of things,†Sensors (Switzerland), vol. 16, no. 9, 2016, doi: 10.3390/s16091466.

T. Antoine-Santoni, B. Poggi, D. Araujo, and C. Babatounde, “Factors Influencing LoRa Communication in IoT Deployment: Overview and Experience Analysis,†2022. doi: 10.5220/0011102600003194.

R. Anzum et al., “A Multiwall Path-Loss Prediction Model Using 433 MHz LoRa-WAN Frequency to Characterize Foliage’s Influence in a Malaysian Palm Oil Plantation Environment,†Sensors, vol. 22, no. 14, 2022, doi: 10.3390/s22145397.

L. Moiroux-Arvis, C. Cariou, and J. P. Chanet, “Evaluation of LoRa technology in 433-MHz and 868-MHz for underground to aboveground data transmission,†Comput Electron Agric, vol. 194, 2022, doi: 10.1016/j.compag.2022.106770.

Hudiono, M. Taufik, R. H. Y. Perdana, and A. E. Rakhmania, “Digital centralized water meter using 433 mhz lora,†Bulletin of Electrical Engineering and Informatics, vol. 10, no. 4, 2021, doi: 10.11591/EEI.V10I4.2950.

M. O. Ojo, D. Adami, and S. Giordano, “Experimental evaluation of a Lora wildlife monitoring network in a forest vegetation area,†Future Internet, vol. 13, no. 5, 2021, doi: 10.3390/fi13050115.