Technologies on Intelligent Financial Risk Early Warning in Higher Education Institutions: A Systematic Review
DOI: http://dx.doi.org/10.62527/joiv.8.3.1536
Abstract
Keywords
Full Text:
PDFReferences
P. G. Badolato, D. C. Donelson, and M. Ege, ‘Audit committee financial expertise and earnings management: The role of status’, Journal of Accounting and Economics, vol. 58, no. 2–3, 2014, doi:10.1016/j.jacceco.2014.08.006.
M. S. Leclair, ‘Evaluating Indicators of College and University Financial Insolvency: Application of Bankruptcy Criteria to Nonprofits’, Journal of Education Finance, vol. 48, no. 1, 2022.
P. Du Jardin, ‘A two-stage classification technique for bankruptcy prediction’, Eur J Oper Res, vol. 254, no. 1, 2016, doi:10.1016/j.ejor.2016.03.008.
G. Yang, ‘Optimization of University Financial Services Using the Blockchain Technology’, Sci Program, vol. 2022, 2022, doi:10.1155/2022/2680366.
S. Letkovský, S. Jenčová, and P. Vašaničová, ‘Is Artificial Intelligence Really More Accurate in Predicting Bankruptcy?’, International Journal of Financial Studies, vol. 12, no. 1, 2024, doi:10.3390/ijfs12010008.
T. Liu and L. Yang, ‘Financial risk early warning Model for Listed Companies Using B.P. Neural Network and Rough Set Theory', IEEE Access, vol. 12, 2024, doi: 10.1109/ACCESS.2024.3367228.
H. Zeng, ‘Influences of mobile edge computing-based service preloading on the early-warning of financial risks’, Journal of Supercomputing, vol. 78, no. 9, 2022, doi: 10.1007/s11227-022-04329-2.
S. Sun, X. Zhang, L. Dong, L. Fan, and X. Liu, ‘Research on the impact of green technology innovation on enterprise financial information management based on compound neural network’, Journal of Organizational and End User Computing, vol. 35, no. 3, 2023, doi:10.4018/JOEUC.326519.
S. Mao, ‘Construction of Economic Management Big Data Platform Based on Artificial Intelligence Algorithm Monitoring and Early Warning’, 2022. doi: 10.1155/2022/1206405.
S. Tsao and H. Wen, ‘University Financial Early Warning Model Based on Fuzzy Comprehensive Evaluation’, Math Probl Eng, vol. 2023, 2023, doi: 10.1155/2023/9799366.
M. Jiang, ‘Research on Influencing Factors and Early Warning of University Finance Based on Decision Tree Model’, Mobile Information Systems, vol. 2022, 2022, doi: 10.1155/2022/5490758.
A. A. S. Perera, A. K. Rahmat, A. Khatibi, and S. M. F. Azam, ‘Reliability Assessment of Indicators Measuring the Impact of Enterprise Risk Management on Performance of Higher Education Institutions in Sri Lanka’, Asian Journal of University Education, vol. 18, no. 1, 2022, doi: 10.24191/AJUE.V18I1.17252.
M. H. Elmagrhi and C. G. Ntim, 'Non-financial reporting in non-profit organizations: the case of risk and governance disclosures in U.K. higher education institutions', Accounting Forum, vol. 47, no. 2, 2023, doi: 10.1080/01559982.2022.2148854.
Z. W.U. and Q. ZHOU, 'Internet Financial Risk Management Under the development of Deep Learning', Pacific International Journal, vol. 6, no. 1, 2023, doi: 10.55014/pij.v6i1.285.
Z. Zang, ‘Analysis of Financial Management and Decision-Making in Institution of Higher Learning Based on Deep Learning Algorithm’, Mobile Information Systems, vol. 2022, 2022, doi:10.1155/2022/5653692.
J. Zhang and R. X. Gao, ‘Deep Learning-Driven Data Curation and Model Interpretation for Smart Manufacturing’, 2021. doi:10.1186/s10033-021-00587-y.
D. Appelt, C. D. Nguyen, A. Panichella, and L. C. Briand, ‘A Machine-Learning-Driven Evolutionary Approach for Testing Web Application Firewalls’, IEEE Trans Reliab, vol. 67, no. 3, 2018, doi:10.1109/TR.2018.2805763.
B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, ‘Systematic literature reviews in software engineering - A systematic literature review’, 2009. doi:10.1016/j.infsof.2008.09.009.
B. Hedin, C. Katzeff, E. Eriksson, and D. Pargman, ‘A systematic review of digital behaviour change interventions for more sustainable food consumption’, 2019. doi: 10.3390/su11092638.
S. A. Hazaea, J. Zhu, S. F. A. Khatib, A. H. Bazhair, and A. A. Elamer, ‘Sustainability assurance practices: a systematic review and future research agenda’, 2022. doi: 10.1007/s11356-021-17359-9.
S. F. A. Khatib, D. F. Abdullah, E. Hendrawaty, and A. A. Elamer, ‘A bibliometric analysis of cash holdings literature: current status, development, and agenda for future research’, Management Review Quarterly, vol. 72, no. 3, 2022, doi: 10.1007/s11301-021-00213-0.
S. F. A. Khatib, D. F. Abdullah, A. Elamer, and S. A. Hazaea, ‘The development of corporate governance literature in Malaysia: a systematic literature review and research agenda’, 2022. doi:10.1108/CG-12-2020-0565.
M. Massaro, J. Dumay, and J. Guthrie, ‘On the shoulders of giants: undertaking a structured literature review in accounting’, Accounting, Auditing and Accountability Journal, vol. 29, no. 5, 2016, doi:10.1108/AAAJ-01-2015-1939.
A. Kuckertz and J. Block, ‘Reviewing systematic literature reviews: ten key questions and criteria for reviewers’, 2021. doi:10.1007/s11301-021-00228-7.
J. MacDonald, ‘Systematic Approaches to a Successful Literature Review’, Journal of the Canadian Health Libraries Association / Journal de l’Association des bibliothèques de la santé du Canada, vol. 34, no. 1, 2014, doi: 10.5596/c13-009.
D. Moher et al., ‘Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement’, 2009. doi:10.1371/journal.pmed.1000097.
P. V. Torres-Carrion, C. S. Gonzalez-Gonzalez, S. Aciar, and G. Rodriguez-Morales, ‘Methodology for systematic literature review applied to engineering and education’, in IEEE Global Engineering Education Conference, EDUCON, 2018. doi:10.1109/educon.2018.8363388.
W. Chen and L. He, ‘Cause analysis and management control research on financial risk of university’, Journal of Discrete Mathematical Sciences and Cryptography, vol. 21, no. 6, 2018, doi:10.1080/09720529.2018.1526761.
V. Balmaseda, M. Coronado, and G. de Cadenas-Santiago, ‘Predicting systemic risk in financial systems using Deep Graph Learning’, Intelligent Systems with Applications, vol. 19, 2023, doi:10.1016/j.iswa.2023.200240.
N. Wang and Y. Guan, ‘Calculus Logic Function in Tax Risk Avoidance in Different Stages of Enterprises’, Applied Mathematics and Nonlinear Sciences, 2022, doi: 10.2478/amns.2022.2.0176.
S. Samansiri, T. Fernando, and B. Ingirige, ‘Critical Failure Factors of Flood Early Warning and Response Systems (FEWRS): A Structured Literature Review and Interpretive Structural Modelling (ISM) Analysis’, Geosciences (Switzerland), vol. 13, no. 5, 2023, doi:10.3390/geosciences13050137.
L. Gu, ‘Design of Finaical Risk Early Warning System in Enterprise Economic Management Based on Cluster Algorithm’, in Smart Innovation, Systems and Technologies, 2023. doi: 10.1007/978-981-19-2768-3_49.
K. Chen et al., ‘Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data’, Water Res, vol. 171, 2020, doi: 10.1016/j.watres.2019.115454.
C. L. Downey, W. Tahir, R. Randell, J. M. Brown, and D. G. Jayne, ‘Strengths and limitations of early warning scores: A systematic review and narrative synthesis’, 2017. doi:10.1016/j.ijnurstu.2017.09.003.
S. L. Hyland et al., ‘Early prediction of circulatory failure in the intensive care unit using machine learning’, Nat Med, vol. 26, no. 3, 2020, doi: 10.1038/s41591-020-0789-4.
Deloitte Center, ‘Top risks in higher education Taking an enterprise approach to risk management for universities’.
P. J. Fitzpatrick, ‘A comparison of ratios of successful industrial enterprises with those of failed firms [J]’, Certified Public Accoun, no. 2, 1932.
C. Zhou, K. Yin, Y. Cao, E. Intrieri, B. Ahmed, and F. Catani, ‘Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method’, Landslides, vol. 15, no. 11, 2018, doi: 10.1007/s10346-018-1022-0.
W. Chen et al., ‘Landslide susceptibility modeling based on GIS and Novel Bagging-based Kernel logistic regression’, Applied Sciences (Switzerland), vol. 8, no. 12, 2018, doi: 10.3390/app8122540.
S. Helal et al., ‘Predicting academic performance by considering student heterogeneity’, Knowl Based Syst, vol. 161, 2018, doi:10.1016/j.knosys.2018.07.042.
F. Pan, H. Pan, R. Ou, and Y. Huang, ‘Research on Early-warning and Countermeasures of Financial Risk in Universities’, 2017. doi:10.2991/essaeme-17.2017.176.
K. Bluwstein, M. Buckmann, A. Joseph, S. Kapadia, and Ö. Şimşek, ‘Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach’, J Int Econ, vol. 145, 2023, doi: 10.1016/j.jinteco.2023.103773.
D. Wang, ‘Mechanism of Financial Risk Prevention in Local Universities’, 2017. doi: 10.2991/emim-17.2017.146.
J. B. Cynthia Vitters, ‘Risk governance in higher education: What boards of trustees need to know. ’, 2023.
K. Yokoyama, ‘Risk management of the English universities after the 2008 financial crisis’, European Journal of Higher Education, vol. 8, no. 2, 2017, doi: 10.1080/21568235.2017.1379424.
S. Goldrick-Rab and D. Labaree, ‘Policy Dialogue: The Problems and Promises of Higher Education in the United States’, 2021. doi:10.1017/heq.2021.27.
X. Wu, ‘University Financial Early Warning Based on Data Mining Algorithm’, in Lecture Notes on Data Engineering and Communications Technologies, 2022. doi: 10.1007/978-3-031-05484-6_143.
S. Lu and M. Cao, ‘Research on internal control optimization of Financial Sharing Center Based on fuzzy mathematics theory and quality function deployment theory’, Journal of Intelligent and Fuzzy Systems, vol. 44, no. 1, 2023, doi: 10.3233/JIFS-221540.
L. Ding-xiang, Y. Ai-qun, L. Tao, and Y. Ai-qun, ‘Risks Faced by Independent Colleges and Management Countermeasures’, 2018. doi:10.2991/ceed-18.2018.11.
L. Liu, ‘Informationized Technological Path for the School-Running Risk Prevention and Supervision of Private Colleges and Universities Under the Background of the Internet’, in Advances in Intelligent Systems and Computing, 2019. doi: 10.1007/978-3-030-15740-1_16.
H. Zhao, ‘Research on the Application of Improved Decision Tree Algorithm based on Information Entropy in the Financial Management of Colleges and Universities’, International Journal of Advanced Computer Science and Applications, vol. 13, no. 12, 2022, doi:10.14569/ijacsa.2022.0131284.
J. Berens, K. Schneider, S. Görtz, S. Oster, and J. Burghoff, ‘Early Detection of Students at Risk – Predicting Student Dropouts Using Administrative Student Data and Machine Learning Methods’, SSRN Electronic Journal, 2021, doi: 10.2139/ssrn.3275433.
W. F. W. Yaacob, S. A. M. Nasir, W. F. W. Yaacob, and N. M. Sobri, ‘Supervised data mining approach for predicting student performance’, Indonesian Journal of Electrical Engineering and Computer Science, vol. 16, no. 3, 2019, doi:10.11591/ijeecs.v16.i3.pp1584-1592.
Y. Li, W. Jiang, L. Yang, and T. Wu, ‘On neural networks and learning systems for business computing’, Neurocomputing, vol. 275, 2018, doi: 10.1016/j.neucom.2017.09.054.
L. Liu, ‘Evaluation Method of Financial Accounting Quality in Colleges and Universities Based on Dynamic Neuron Model’, Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/8520576.
A. Samitas, E. Kampouris, and D. Kenourgios, ‘Machine learning as an early warning system to predict financial crisis’, International Review of Financial Analysis, vol. 71, 2020, doi:10.1016/j.irfa.2020.101507.
X. Zhao and B. Lu, ‘Constructing a Finaical Risk Early Warning Model for Chinese Public Hospitals Based on Machine Learning’, Int J Econ Finance, vol. 16, no. 3, 2024, doi: 10.5539/ijef.v16n3p64.
Z. Zhang, M. Luo, Z. Hu, and H. Niu, ‘Textual Emotional Tone and Financial Crisis Identification in Chinese Companies: A Multi‐Source Data Analysis Based on Machine Learning’, Applied Sciences (Switzerland), vol. 12, no. 13, 2022, doi: 10.3390/app12136662.
A. A. Turgaeva, L. V. Kashirskaya, Y. A. Zurnadzhyants, O. A. Latysheva, I. V. Pustokhina, and A. V. Sevbitov, ‘Assessment of the financial security of insurance companies in the organization of internal control’, Entrepreneurship and Sustainability Issues, vol. 7, no. 3, 2020, doi: 10.9770/jesi.2020.7.3(52).
Z. M. Zadorozhnyy, S. Zhukevych, T. Portovaras, V. Rozelyuk, N. Zhuk, and I. Nazarova, ‘Analysis of Risks in The Financial Security Management System of Business Entities’, Financial and Credit Activity: Problems of Theory and Practice, vol. 6, no. 53, 2023, doi:10.55643/fcaptp.6.53.2023.4242.
G. Lin, A. Shangle, Z. Haoxiang, Y. Jingyue, and Y. Junyao, ‘Research on the Construction of Financial Supervision Information System Based on Machine Learning’, Wirel Commun Mob Comput, vol. 2022, 2022, doi: 10.1155/2022/9986095.
P. Bergmann, E. Kamarás, W. Gleißner, and E. Guenther, ‘Enhanced cash flow valuation in real estate management by integrating innovative materials and risk assessment’, Sustainability (Switzerland), vol. 12, no. 6, 2020, doi: 10.3390/su12062201.
L. L. Yin, Y. W. Qin, Y. Hou, and Z. J. Ren, ‘A Convolutional Neural Network-Based Model for Supply Chain Finaical Risk Early Warning’, Comput Intell Neurosci, vol. 2022, 2022, doi:10.1155/2022/7825597.
Y. Huang, ‘Construction and Analysis of Green Investment Risk Evaluation Index System Based on Information Entropy Fuzzy Hierarchical Analysis Model’, Wirel Commun Mob Comput, vol. 2021, 2021, doi: 10.1155/2021/4850321.
E. Telipenko, T. Chernysheva, A. Zakharova, and A. Dumchev, ‘Results of research on development of an intellectual information system of bankruptcy risk assessment of the enterprise’, in IOP Conference Series: Materials Science and Engineering, 2015. doi:10.1088/1757-899X/93/1/012058.
X. Yuan and Y. Zhang, ‘Analysis of bank loan risk management based on bp neural network’, in ACM International Conference Proceeding Series, 2021. doi: 10.1145/3482632.3487450.
P. H. Tsai, Y. W. Wang, and W. C. Chang, ‘Hybrid MADM-based study of key risk factors in house-for-pension reverse mortgage lending in Taiwan’s banking industry’, Socioecon Plann Sci, vol. 86, 2023, doi: 10.1016/j.seps.2022.101460.
В. Жихарєва and О. Козир, ‘Methodical Approach to Complex Investment Analysis of Cash Flows on The Example of The Fleet Replenishment Project’, Економіка та суспільство, no. 43, 2022, doi:10.32782/2524-0072/2022-43-16.
I. E. Agbehadji, T. Mabhaudhi, J. Botai, and M. Masinde, ‘A Systematic Review of Existing Early Warning Systems’ Challenges and Opportunities in Cloud Computing Early Warning Systems’, 2023. doi: 10.3390/cli11090188.
W. H. Beaver, ‘Financial Ratios As Predictors of Failure’, Journal of Accounting Research, vol. 4, 1966, doi: 10.2307/2490171.
J. L. Bellovary, D. E. Giacomino, and M. D. Akers, ‘A Review of Bankruptcy Prediction Studies: 1930-Present’, Journal of Financial Education, vol. 33, no. Winter, 2007, doi:10.1017/CBO9781107415324.004.
E. I. Altman, ‘Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy’, J Finance, vol. 23, no. 4, 1968, doi: 10.2307/2978933.
M. Blum, ‘Failing Company Discriminant Analysis’, Journal of Accounting Research, vol. 12, no. 1, 1974, doi: 10.2307/2490525.
Chou W, Pai T, Jiang T, Chou W, Tang C, Chang M, ‘Hydrophilic aromatic residue and in silico structure for carbohydrate binding module’,PLoS ONE (2011) 6(9), doi:10.1371/journal.pone.0024814.
L. A. Burke, K. A. Clark, K. S. Ali, B. W. Gibson, M. A. Smigelsky, and R. A. Neimeyer, ‘Risk Factors for Anticipatory Grief in Family Members of Terminally Ill Veterans Receiving Palliative Care Services’, J Soc Work End Life Palliat Care, vol. 11, no. 3–4, 2015, doi: 10.1080/15524256.2015.1110071.
M. D. Odom and R. Sharda, ‘A neural network model for bankruptcy prediction’, in IJCNN. International Joint Conference on Neural Networks, 1990. doi: 10.1109/ijcnn.1990.137710.
K. Y. Tam and M. Y. Kiang, ‘Managerial applications of neural networks: The case of bank failure predictions’, Manage Sci, vol. 38, no. 7, 1992, doi: 10.1287/mnsc.38.7.926.
E. I. Altman, G. Marco, and F. Varetto, ‘Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)’, J Bank Financ, vol. 18, no. 3, 1994, doi:10.1016/0378-4266(94)90007-8.
R. L. Wilson and R. Sharda, ‘Bankruptcy prediction using neural networks’, Decis Support Syst, vol. 11, no. 5, 1994, doi:10.1016/0167-9236(94)90024-8.
D. Fletcher and E. Goss, ‘Forecasting with neural networks. An application using bankruptcy data’, Information and Management, vol. 24, no. 3, 1993, doi: 10.1016/0378-7206(93)90064-Z.
K. C. Lee, I. Han, and Y. Kwon, ‘Hybrid neural network models for bankruptcy predictions’, Decis Support Syst, vol. 18, no. 1 SPEC. ISS., 1996, doi: 10.1016/0167-9236(96)00018-8.
W. T. Pan, ‘A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example’, Knowl Based Syst, vol. 26, 2012, doi: 10.1016/j.knosys.2011.07.001.
M. J. Beynon and M. J. Peel, ‘Variable precision rough set theory and data discretisation: An application to corporate failure prediction’, Omega (Westport), vol. 29, no. 6, 2001, doi: 10.1016/S0305-0483(01)00045-7.
T. E. McKee, ‘Rough sets bankruptcy prediction models versus auditor signalling rates’, J Forecast, vol. 22, no. 8, 2003, doi: 10.1002/for.875.
Z. Xiao, X. Yang, Y. Pang, and X. Dang, ‘The prediction for listed companies’ financial distress by using multiple prediction methods with rough set and Dempster-Shafer evidence theory’, Knowl Based Syst, vol. 26, 2012, doi: 10.1016/j.knosys.2011.08.001.
L. Wang and C. Wu, ‘Business failure prediction based on two-stage selective ensemble with manifold learning algorithm and kernel-based fuzzy self-organizing map’, Knowl Based Syst, vol. 121, 2017, doi:10.1016/j.knosys.2017.01.016.
H. Li and J. Sun, ‘Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples - Evidence from the Chinese hotel industry’, Tour Manag, vol. 33, no. 3, 2012, doi: 10.1016/j.tourman.2011.07.004.
F. Lin, C. C. Yeh, and M. Y. Lee, ‘The use of hybrid manifold learning and support vector machines in the prediction of business failure’, Knowl Based Syst, vol. 24, no. 1, 2011, doi:10.1016/j.knosys.2010.07.009.
S. Y. Kim, ‘Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis’, Service Industries Journal, vol. 31, no. 3, 2011, doi: 10.1080/02642060802712848.
D. K. Chandra, V. Ravi, and P. Ravisankar, ‘Support vector machine and wavelet neural network hybrid: Application to bankruptcy prediction in banks’, 2010. doi: 10.1504/IJDMMM.2010.031019.
J. Sun, H. Li, Q. H. Huang, and K. Y. He, ‘Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches’, Knowl Based Syst, vol. 57, 2014, doi: 10.1016/j.knosys.2013.12.006.
K. S. Shin, T. S. Lee, and H. J. Kim, ‘An application of support vector machines in bankruptcy prediction model’, Expert Syst Appl, vol. 28, no. 1, 2005, doi: 10.1016/j.eswa.2004.08.009.
J. H. Min and Y. C. Lee, ‘Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters’, Expert Syst Appl, vol. 28, no. 4, 2005, doi: 10.1016/j.eswa.2004.12.008.
K. Gopalakrishnan and S. Kim, ‘Support Vector Machines Approach to HMA Stiffness Prediction’, J Eng Mech, vol. 137, no. 2, 2011, doi:10.1061/(asce)em.1943-7889.0000214.
G. Kou, X. Chao, Y. Peng, F. E. Alsaadi, and E. Herrera-Viedma, ‘Machine learning methods for systemic risk analysis in financial sectors’, 2019. doi: 10.3846/tede.2019.8740.
L. Liu, C. Chen, and B. Wang, ‘Predicting financial crises with machine learning methods’, J Forecast, vol. 41, no. 5, 2022, doi:10.1002/for.2840.
C. Tarkocin and M. Donduran, ‘Constructing early warning indicators for banks using machine learning models’, North American Journal of Economics and Finance, vol. 69, 2024, doi:10.1016/j.najef.2023.102018.
B. Tan, Z. Gan, and Y. Wu, ‘The measurement and early warning of daily financial stability index based on XGBoost and SHAP: Evidence from China’, Expert Syst Appl, vol. 227, 2023, doi:10.1016/j.eswa.2023.120375.
X. Li, S. Yan, J. Lu, and Y. Ding, ‘Prediction and Analysis of Corporate Financial Risk Assessment Using Logistic Regression Algorithm in Multiple Uncertainty Environment’, J Environ Public Health, vol. 2022, 2022, doi: 10.1155/2022/2733923.
S. Hong, H. Wu, X. Xu, and W. Xiong, ‘Early Warning of Enterprise Financial Risk Based on Decision Tree Algorithm’, Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/9182099.
H. Cen, D. Huang, Q. Liu, Z. Zong, and A. Tang, ‘Application Research on Risk Assessment of Municipal Pipeline Network Based on Random Forest Machine Learning Algorithm’, Water (Switzerland), vol. 15, no. 10, 2023, doi: 10.3390/w15101964.
H. He, Y. Zhao, H. Tian, and W. Li, ‘Risk Evaluation of Overseas Mining Investment Based on a Support Vector Machine’, Sustainability (Switzerland), vol. 15, no. 1, 2023, doi:10.3390/su15010240.
X. Li, J. Wang, and C. Yang, 'Risk prediction in financial management of listed companies based on optimized B.P. neural network under digital economy', Neural Comput Appl, vol. 35, no. 3, 2023, doi:10.1007/s00521-022-07377-0.
M. S. Murugan and S. K. T, ‘Large-scale data-driven financial risk management & analysis using machine learning strategies’, Measurement: Sensors, vol. 27, 2023, doi:10.1016/j.measen.2023.100756.