Classification of Sugarcane Area Using Landsat 8 and Random Forest based on Phenology Knowledge

Sudianto Sudianto - Institut Teknologi Telkom Purwokerto, 53147, Indonesia
Yeni Herdiyeni - IPB University, Bogor, 16680, Indonesia
Lilik Prasetyo - IPB University, Bogor, 16680, Indonesia

Citation Format:



Indonesia is one of the largest countries globally with an area for planting sugarcane. The current problem is that determining the planting area of sugarcane is still done conventionally; this is very limited and wastes time. Thus, knowing the sugarcane planting area becomes essential for policymaking through Remote Sensing technology. However, the challenge of Remote Sensing is the limited data due to weather and the spectral variability of other plants. So, it is necessary to classify based on phenological knowledge. The study aims to classify sugarcane areas based on phenological knowledge using Remote Sensing and Machine Learning. This application finished on the cloud platform Google Earth Engine (GEE) through Landsat 8 satellite imagery data. The knowledge of sugarcane phenology was built based on the Normalized Difference Vegetation Index (NDVI) spectral value and built with the harmonic model. In addition, classification is accomplished by object-oriented (OO) methods for segmentation classification. Object-oriented is solved by the Simple Non-Iterative Clustering (SNIC) algorithm for spatial cluster identification, the Gray-Level Co-occurrence Matrix (GLCM) for texture extraction, and the Random Forest algorithm for Land Use-Land Cover (LULC) classification. The results of the accuracy analysis using the confusion matrix and the classification of sugar cane areas based on phenological knowledge obtained the best results with an overall accuracy of 95.9% with a Kappa coefficient of 0.92. It can be concluded that a classification approach with knowledge of plant phenology can help better classify the availability of land for plantations in the future.


Classification; GEE; Landsat 8; Object-Oriented; Phenology; SNIC GLCM.

Full Text:



E. Respati, Outlook Komoditas Perkebunan Tebu. Indonesia: Pusat Data dan Sistem Informasi Pertanian Sekretaris Jenderal-Kementerian Pertanian, 2019.

[BPS] Badan Pusat Statistik, Indonesian Sugarcane Statistics 2018, vol. 4, no. 1. 2019.

A. C. Xavier, B. F. T. Rudorff, Y. E. Shimabukuro, L. M. S. Berka, and M. A. Moreira, “Multi-temporal analysis of MODIS data to classify sugarcane crop,” International Journal of Remote Sensing, vol. 27, no. 4, pp. 755–768, 2006, doi: 10.1080/01431160500296735.

C. Fortes and J. A. M. Demattê, “Discrimination of sugarcane varieties using Landsat 7 ETM+ spectral data,” International Journal of Remote Sensing, vol. 27, no. 7, pp. 1395–1412, 2006, doi: 10.1080/01431160500383863.

T. I. R. Almeida, C. R. De Souza Filho, and R. Rossetto, “ASTER and Landsat ETM+ images applied to sugarcane yield forecast,” International Journal of Remote Sensing, vol. 27, no. 19, pp. 4057–4069, 2006, doi: 10.1080/01431160600857451.

H. Lin, J. Chen, Z. Pei, S. Zhang, and X. Hu, “Monitoring sugarcane growth using ENVISAT ASAR data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 8, pp. 2572–2580, 2009, doi: 10.1109/TGRS.2009.2015769.

M. El Hajj, A. Bégué, S. Guillaume, and J. F. Martiné, “Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices - The case of sugarcane harvest on Reunion Island,” Remote Sensing of Environment, vol. 113, no. 10, pp. 2052–2061, 2009, doi: 10.1016/j.rse.2009.04.009.

B. F. T. Rudorff, D. A. de Aguiar, W. F. da Silva, L. M. Sugawara, M. Adami, and M. A. Moreira, “Studies on the rapid expansion of sugarcane for ethanol production in São Paulo state (Brazil) using Landsat data,” Remote Sensing, vol. 2, no. 4, pp. 1057–1076, 2010, doi: 10.3390/rs2041057.

J. R. Townshend, C. O. Justice, and V. Kalb, “Characterization and classification of South American Land cover types using satellite data,” International Journal of Remote Sensing, vol. 8, no. 8, pp. 1189–1207, 1987, doi: 10.1080/01431168708954764.

P. T. Wolter, D. J. Mladenoff, G. E. Host, and T. R. Crow, “Improved forest classification in the northern Lake States using multi-temporal Landsat imagery,” Photogrammetric Engineering and Remote Sensing, vol. 61, no. 9, pp. 1129–1143, 1995.

N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sensing of Environment, vol. 202, no. 2016, pp. 18–27, 2017, doi: 10.1016/j.rse.2017.06.031.

P. Griffiths, S. van der Linden, T. Kuemmerle, and P. Hostert, “A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 5, pp. 2088–2101, 2013, doi: 10.1109/jstars.2012.2228167.

T. Hermosilla, M. A. Wulder, J. C. White, N. C. Coops, and G. W. Hobart, “Disturbance-Informed Annual Land Cover Classification Maps of Canada’s Forested Ecosystems for a 29-Year Landsat Time Series,” Canadian Journal of Remote Sensing, vol. 44, no. 1, pp. 67–87, 2018, doi: 10.1080/07038992.2018.1437719.

S. Sudianto and R. D. Wahyuningrum, “Identifikasi Sebaran Nitrogen pada Tanaman Padi Berbasis Pengetahuan Fenologi dan Remote Sensing,” Jurnal Nasional Pendidikan Teknik Informatika (Janapati), vol. 11, no. 3, pp. 166–175, 2022.

A. Shalaby and R. Tateishi, “Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt,” Applied Geography, vol. 27, no. 1, pp. 28–41, 2007, doi: 10.1016/j.apgeog.2006.09.004.

M. A. Vieira, A. R. Formaggio, C. D. Rennó, C. Atzberger, D. A. Aguiar, and M. P. Mello, “Object Based Image Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas,” Remote Sensing of Environment, vol. 123, pp. 553–562, 2012, doi: 10.1016/j.rse.2012.04.011.

Kumar Navulur, Multispectral image analysis using the object-oriented paradigm, vol. 53, no. 9. CRC Press/Taylor&Francis, 2006.

M. P. dos Santos Silva, G. Camara, M. I. S. Escada, and R. C. Modesto de Souza, “Remote-sensing image mining: Detecting agents of land-use change in tropical forest areas,” International Journal of Remote Sensing, vol. 29, no. 16, pp. 4803–4822, 2008, doi: 10.1080/01431160801950634.

R. Achanta and S. Süsstrunk, “Superpixels and polygons using simple non-iterative clustering,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua, no. Ic, pp. 4895–4904, 2017, doi: 10.1109/CVPR.2017.520.

P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, “Random forests for land cover classification,” Pattern Recognition Letters, vol. 27, no. 4, pp. 294–300, 2006, doi: 10.1016/j.patrec.2005.08.011.

Y. Jin, X. Liu, Y. Chen, and X. Liang, “Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: a case study of central Shandong,” International Journal of Remote Sensing, vol. 39, no. 23, pp. 8703–8723, 2018, doi: 10.1080/01431161.2018.1490976.

[PTPN X] PT Perkebunan Nusantara X, “Optimizing Prime Commodities Management Through Synergy in Innovation,” 2018.

M. Boschetti, D. Stroppiana, P. A. Brivio, and S. Bocchi, “Multi-year monitoring of rice crop phenology through time series analysis of MODIS images,” International Journal of Remote Sensing, vol. 30, no. 18, pp. 4643–4662, 2009, doi: 10.1080/01431160802632249.

J. M. Pena-Barragan, M. K. Ngugi, R. E. Plant, and J. Six, “Object-based crop identification using multiple vegetation indices, textural features and crop phenology,” Remote Sensing of Environment, vol. 115, no. 6, pp. 1301–1316, 2011, doi: 10.1016/j.rse.2011.01.009.

S. Sudianto, Y. Herdiyeni, and L. B. Prasetyo, “Early Warning for Sugarcane Growth using Phenology-Based Remote Sensing by Region,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 2, 2023, doi: 10.14569/IJACSA.2023.0140259.

D. S. Shumway, R.H., & Stoffer, Time Series: A Data Analysis Approach Using R: A Data Analysis Approach Using R. 2019.

C. Padwick, M. Deskevich, F. Pacifici, and S. Smallwood, “WorldView-2 pan-sharpening,” American Society for Photogrammetry and Remote Sensing Annual Conference 2010: Opportunities for Emerging Geospatial Technologies, vol. 2, pp. 740–753, 2010.

R. S. Lunetta, J. F. Knight, J. Ediriwickrema, J. G. Lyon, and L. D. Worthy, “Land-cover change detection using multi-temporal MODIS NDVI data,” Remote Sensing of Environment, vol. 105, no. 2, pp. 142–154, 2006, doi: 10.1016/j.rse.2006.06.018.

R. P. Singh, N. Singh, S. Singh, and S. Mukherjee, “Normalized Difference Vegetation Index (NDVI) Based Classification to Assess the Change in Land Use/Land Cover (LULC) in Lower Assam, India,” International Journal of Advanced Remote Sensing and GIS, vol. 5, no. 1, pp. 1963–1970, 2016, doi: 10.23953/cloud.ijarsg.74.

M. C. Hansen, D. P. Roy, E. Lindquist, B. Adusei, C. O. Justice, and A. Altstatt, “A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo

Basin,” Remote Sensing of Environment, vol. 112, no. 5, pp. 2495–2513, 2008, doi: 10.1016/j.rse.2007.11.012.

J. R. B. Bwangoy, M. C. Hansen, D. P. Roy, G. De Grandi, and C. O. Justice, “Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices,” Remote Sensing of Environment, vol. 114, no. 1, pp. 73–86, 2010, doi: 10.1016/j.rse.2009.08.004.

Sudianto, Y. Herdiyeni, and L. B. Prasetyo, “Machine learning for sugarcane mapping based on segmentation in cloud platform,” presented at the The 3rd International Conference on Engineering, Technology and Innovative Researches, Purwokerto, Indonesia, 2023, p. 020001. doi: 10.1063/5.0132180.

D. M. Chen and D. Stow, “The effect of training strategies on supervised classification at different spatial resolutions,” Photogrammetric Engineering and Remote Sensing, vol. 68, no. 11, pp. 1155–1161, 2002.

A. Tassi and M. Vizzari, “Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms,” Remote Sensing, 2020, doi:

M. Hall-Beyer, “Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales,” International Journal of Remote Sensing, vol. 38, no. 5, pp. 1312–1338, 2017, doi: 10.1080/01431161.2016.1278314.

Z. Zhou et al., “Object-oriented classification of sugarcane using time-series middle-resolution remote sensing data based on AdaBoost,” PLoS ONE, vol. 10, no. 11, pp. 1–16, 2015, doi: 10.1371/journal.pone.0142069.

T. Butkhot and P. Reungsang, “Asia - Pacific Journal of Science and Technology Assessment of machine learning on sugarcane classification using Landsat-8 and Sentinel-2 satellite imagery,” pp. 1–11, 2021.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JOIV : International Journal on Informatics Visualization
ISSN 2549-9610  (print) | 2549-9904 (online)
Organized by Department of Information Technology - Politeknik Negeri Padang, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W :
E :,,

View JOIV Stats

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.