Optimization of General Threshold Value for Preprocessing in Plasmodium Parasites Detection

Hanung Nugroho - Universitas Gadjah Mada, Indonesia
Rizki Nurfauzi - Universitas Gadjah Mada, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.62527/joiv.7.4.1285


The high mortality rate of malaria makes it a severe disease that spreads throughout all-region by infected female Anopheles mosquitoes, especially in tropical countries. Accurate early malaria detection is one of the ways to reduce the mortality rate. Microscopy-based malaria examinations are still considered the gold standard. Due to numerous large malaria patients with limited parasitologists, an automated detection system is needed as a second opinion to assist parasitologists. This study proposed an optimization method for finding an optimal global threshold value for pre-processing parasite detection. There were three stages of the proposed method. The first is to pre-process digital microscopic images using color channel selection, contrast stretching, and morphological operation. The second is to find the global threshold value using multiple modified Otsu’s. The third is to determine the optimum global threshold value. In the last stage, predicted threshold values are generated using a pattern recognition approach to determine the optimum global threshold value. The proposed method evaluated 468 microscopic images captured from hundreds of thin smear blood slides. The slides are provided by the Department of Parasitology-UGM and the Eijkman Institute for Molecular Biology. The set image contains 691 malaria parasites in all types and life stages of malaria parasites. The proposed method obtained a sensitivity of 99.6 % and the smallest FPs number compared to without the optimization.  It indicates that the proposed method has the potential to be implemented in the initial stages of the malaria detection system.


Detection; Malaria; plasmodium; parasite; global thresholding

Full Text:



Z. Jan, A. Khan, M. Sajjad, K. Muhammad, S. Rho, and I. Mehmood, “A review on automated diagnosis of malaria parasite in microscopic blood smears images,” Multimedia Tools and Applications, vol. 77, no. 8, pp. 9801–9826, Mar. 2017, doi: 10.1007/s11042-017-4495-2.

“WHO | World malaria report 2018,” WHO, 2018.

Ministry of Health of the Republic of Indonesia, “Eliminasi Malaria Indonesia.” .

H. A. Nugroho et al., “Multithresholding Approach for Segmenting Plasmodium Parasites,” 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE), Oct. 2019, doi: 10.1109/iciteed.2019.8929995.

J. Frean, “Microscopic determination of malaria parasite load: role of image analysis,” Microsc. Sci. Technol. Appl. Educ., pp. 862–866, 2010.

J. A. Quinn, A. Andama, I. Munabi, and F. N. Kiwanuka, “Automated Blood Smear Analysis for Mobile Malaria Diagnosis,” Mob. Point-of-Care Monit. Diagnostic Device Des., vol. 31, pp. 115–132, 2014.

M. L. Wilson, “Malaria Rapid Diagnostic Tests,” Clinical Infectious Diseases, vol. 54, no. 11, pp. 1637–1641, May 2012, doi:10.1093/cid/cis228.

M. M. Kettelhut, “External quality assessment schemes raise standards: evidence from the UKNEQAS parasitology subschemes,” Journal of Clinical Pathology, vol. 56, no. 12, pp. 927–932, Dec. 2003, doi: 10.1136/jcp.56.12.927.

F. B. Tek, A. G. Dempster, and I. Kale, “Computer vision for microscopy diagnosis of malaria,” Malaria Journal, vol. 8, no. 1, Jul. 2009, doi: 10.1186/1475-2875-8-153.

R. E. Coleman et al., “Comparison of field and expert laboratory microscopy for active surveillance for asymptomatic Plasmodium falciparum and Plasmodium vivax in western Thailand.,” The American Journal of Tropical Medicine and Hygiene, vol. 67, no. 2, pp. 141–144, Aug. 2002, doi: 10.4269/ajtmh.2002.67.141.

I. Bates, V. Bekoe, and A. Asamoa-Adu, Malaria Journal, vol. 3, no. 1, p. 38, 2004, doi: 10.1186/1475-2875-3-38.

K. Mitiku, G. Mengistu, and B. Gelaw, “The reliability of blood film examination for malaria at the peripheral health unit,” Ethiop. J. Heal. Dev., vol. 17, no. 3, pp. 197–204, 2003.

World Health Organization, “Basic malaria microscopy – Part I: Learner’s guide,” Second edi., 2010.

A. Moody, “Rapid Diagnostic Tests for Malaria Parasites,” Clinical Microbiology Reviews, vol. 15, no. 1, pp. 66–78, Jan. 2002, doi:10.1128/cmr.15.1.66-78.2002.

M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma, “Image analysis and machine learning for detecting malaria,” Translational Research, vol. 194, pp. 36–55, Apr. 2018, doi:10.1016/j.trsl.2017.12.004.

B. R. Mirdha, J. C. Samantaray, and B. Mishra, “Laboratory diagnosis of malaria.,” Journal of Clinical Pathology, vol. 50, no. 4, pp. 356–356, Apr. 1997, doi: 10.1136/jcp.50.4.356-a.

A. Ajala, Funmilola. A, F. Fenwa, Olusayo. D, A. Aku, and Micheal. A., “Comparative Analysis of different types of Malaria Diseases using First Order Features,” International Journal of Applied Information Systems, vol. 8, no. 3, pp. 20–26, Feb. 2015, doi:10.5120/ijais15-451297.

H. Tulsani and S. Saxena, “Segmentation using Morphological Watershed Transformation for Counting Blood Cells,” Int. J. Comput. Appl. Inf. Technol., vol. 2, p. 28.

D. Yang et al., “A portable image-based cytometer for rapid malaria detection and quantification,” PLOS ONE, vol. 12, no. 6, p. e0179161, Jun. 2017, doi: 10.1371/journal.pone.0179161.

D. K. Das, M. Ghosh, M. Pal, A. K. Maiti, and C. Chakraborty, “Machine learning approach for automated screening of malaria parasite using light microscopic images,” Micron, vol. 45, pp. 97–106, Feb. 2013, doi: 10.1016/j.micron.2012.11.002.

D. K. Das, C. Chakraborty, B. Mitra, A. K. Maiti, and A. K. Ray, “Quantitative microscopy approach for shape‐based erythrocytes characterization in anaemia,” Journal of Microscopy, vol. 249, no. 2, pp. 136–149, Dec. 2012, doi: 10.1111/jmi.12002.

C. Ma, P. Harrison, L. Wang, and R. L. Coppel, “Automated estimation of parasitaemia of Plasmodium yoelii-infected mice by digital image analysis of Giemsa-stained thin blood smears,” Malaria Journal, vol. 9, no. 1, Dec. 2010, doi: 10.1186/1475-2875-9-348.

A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, “Quantitative Imaging with a Mobile Phone Microscope,” PLoS ONE, vol. 9, no. 5, p. e96906, May 2014, doi:10.1371/journal.pone.0096906.

S. Kaewkamnerd, C. Uthaipibull, A. Intarapanich, M. Pannarut, S. Chaotheing, and S. Tongsima, “An automatic device for detection and classification of malaria parasite species in thick blood film,” BMC Bioinformatics, vol. 13, no. S17, Dec. 2012, doi:10.1186/1471-2105-13-s17-s18.

M. Imroze Khan, B. Acharya, B. Kumar Singh, and J. Soni, “Content Based Image Retrieval Approaches for Detection of Malarial Parasite in Blood Images,” Int. J. Biometrics Bioinforma., vol. 5, no. 2, pp. 97–110, 2011.

R. B. Hegde, K. Prasad, H. Hebbar, and B. M. K. Singh, “Development of a robust algorithm for detection of nuclei of white blood cells in peripheral blood smear images,” Multimedia Tools and Applications, vol. 78, no. 13, pp. 17879–17898, Jan. 2019, doi:10.1007/s11042-018-7107-x.

I. Md. D. Maysanjaya, H. A. Nugroho, N. A. Setiawan, and E. E. H. Murhandarwati, “Segmentation of Plasmodium vivax phase on digital microscopic images of thin blood films using colour channel combination and Otsu method,” AIP Conference Proceedings, 2016, doi: 10.1063/1.4958595.

D. M. Memeu, K. A. Kaduki, A. C. K. Mjomba, N. S. Muriuki, and L. Gitonga, “Detection of plasmodium parasites from images of thin blood smears,” Open Journal of Clinical Diagnostics, vol. 03, no. 04, pp. 183–194, 2013, doi: 10.4236/ojcd.2013.34034.

H. A. Nugroho, W. A. Saputra, A. E. Permanasari, and E. E. H. Murhandarwati, “Automated determination of Plasmodium region of interest on thin blood smear images,” 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA), Aug. 2017, doi:10.1109/isitia.2017.8124108.

S. Rajaraman et al., “Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images,” PeerJ, vol. 6, p. e4568, Apr. 2018, doi:10.7717/peerj.4568.

H. A. Nugroho, R. Nurfauzi, E. E. H. Murhandarwati, and P. Purwono, “PlasmoID: A dataset for Indonesian malaria parasite detection and segmentation in thin blood smear.” 2022.

N. E. Ross, C. J. Pritchard, D. M. Rubin, and A. G. Dusé, “Automated image processing method for the diagnosis and classification of malaria on thin blood smears,” Medical & Biological Engineering & Computing, vol. 44, no. 5, pp. 427–436, Apr. 2006, doi: 10.1007/s11517-006-0044-2.

B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” Journal of Electronic Imaging, vol. 13, no. 1, p. 146, Jan. 2004, doi: 10.1117/1.1631315.

B. Durakovic, “Design of experiments application, concepts, examples: State of the art,” Periodicals of Engineering and Natural Sciences (PEN), vol. 5, no. 3, Dec. 2017, doi: 10.21533/pen.v5i3.145.