A Novel Approach of Animal Skin Classification Using CNN Model with CLAHE and SUCK Method Support

Abdul Rangkuti - Bina Nusantara University, Jakarta, Indonesia
Varyl Athala Hasbi - Bina Nusantara University, Jakarta, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.30630/joiv.7.3.1153


This study describes the process of classifying animal skin images which are rather difficult to obtain optimal image characteristics. For this reason, in the pre-processing stage, we propose two methods to support feature extraction: sharpening using a convolutional kernel (SUCK-Sharpening) and adaptive histogram equalization with limited contrast (CLAHE-Equalized). SUCK works by operating on these pixel values using direct math to build a new image; this final value is the new value of the current pixel. CLAHE overcomes the limitations of the global approach by performing local contrast enhancement. Because of the advantages of the two methods, it becomes a solution to get features processed at the feature extraction and classification stage. The process of animal skin imagery has characteristics in terms of shape and texture, including the characteristics of animal skin color. In this study, some experiments have been carried out on several CNN models, with an average classification accuracy of more than 70% using the sharpened and equalized methods on six animal skins. More detail, the average classification accuracy using 3 CNN models supported by two methods, namely Sharpening and Equalize on the CNN Resnet 50V2 model is 67.73% and 73.78%, InceptionV3 model at 82.13%, and 74.76% and Densenet121 models were 87.64% and 87.46 %. This research can be continued to improve the accuracy of other animal skin images, including determining fake or genuine skin images.


Animal skin; CLAHE; SUCK; CNN; Resnet50 V2; Inception V3; Densenet121

Full Text:



Hastutiningrum, Sri. “Pemanfaatan Limbah Kulit Split Industri Penyamakan Kulit Untuk Glue Dengan Hidrolisis Kolagen.†, Jurnal Teknologi,2009.

Rustam, H. “Analisis Daya Saing Produk Kulit Olahan Pada Industri Penyamakan Kulit Di Kabupaten Magetan.†MEDIA SOERJO 5 (2),2009.

Hardyanti, E. R., Jayanta, J., & Ernawati, I. “Penggunaan Convolutional Neural Network Dalam Identifikasi Bahan Kulit Sapi Dan Babi Dengan Tensorflowâ€. Seinasi-Kesi, 3(1), 140-146,2020.

Nadira, M. “Implementasi deep learning dengan metode convolutional neural network untuk identifikasi citra bahan kulit hewanâ€, (Doctoral dissertation, Universitas Pembangunan Nasional Veteran Jakarta),2019.

Purwaningsih, N., “Penerapan Multilayer Perceptron Untuk Temu kembaliJenis Kulit Sapi Tersamakâ€,. Jurnal TeknoIf, 4(1),2016.

Purwaningsih, N., & Jamila, J. “ Analisis tekstur kulit sapi berdasarkan ekstraksi ciri citra. Berkalaâ€, Penelitian Teknologi Kulit, Sepatu, dan Produk Kulit, 15(2), 10-12,2016.

Gazali, W., Soeparno, H., & Ohliati, J, â€Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital.â€, Jurnal Mat Stat, 12(2), 103-113,2012.

Ye, J., Shen, Z., Behrani, P., Ding, F., & Shi, Y. Q. “Detecting USM image sharpening by using CNN. Signal Processing: Image Communicationâ€, 68, 258-264,2018.

Rangkuti, A. H., Harjoko, A., & Putra, A. E, “Improvement Of Accuracy In Batik Image Classification Due To Scale And Rotation Changes Using M2ECS-LBP Algorithmâ€, Journal of Theoretical and Applied Information Technology, 97-14,2019.

Rangkuti, A. H., Athala, V. H., Luthfi, N. F., Aditama, S. V., & Kerta, J. M., “Reliable of traditional cloth pattern Classification Using Convolutional Neural Networkâ€. In 2nd International Conference on Artificial Intelligence and Data Sciences (AiDAS) (pp. 1-6). IEEE, 2021.

Guo, Y., Li, H., & Zhuang, P. “ Underwater image enhancement using a multiscale dense generative adversarial networkâ€, IEEE Journal of Oceanic Engineering, 45(3), 862-870,2019.

Ye, J., Shen, Z., Behrani, P., Ding, F., & Shi, Y. Q. “Detecting USM image sharpening by using CNNâ€, Signal Processing: Image Communication, 68, 258-264,2018.

Surya, T., Palanivel, A., & Bhuvaneswari, R. (2021, December). Super-pixel Segmentation based Skin texture pattern recognition. In 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 790-798). IEEE.

Shuhan, L. U., & YE, S. J. (2020). Using an image segmentation and support vector machine method for identifying two locust species and instars. Journal of Integrative Agriculture, 19(5), 1301-1313.

Athala, V. H., Rangkuti, A. H., Luthfi, N. F., Aditama, S. V., & Kerta, J. M. (2021, November). Improved pattern recognition of various traditional clothes with Convolutional neural network. In 2021 3rd International Symposium on Material and Electrical Engineering Conference (ISMEE) (pp. 15-20). IEEE.

Rangkuti, A. H., Ramadhan, M. M., & Aslamia, A. H. (2021, November). Reliable Batik Image Classification: Mulwin-LBP Algorithm and Deep Neural Network. In 2021 3rd International Symposium on Material and Electrical Engineering Conference (ISMEE) (pp. 96-101). IEEE.

Rangkuti, A. H., Athala, V. H., Luthfi, N. F., Aditama, S. V., Ramadhan, M. M., & Aslamia, A. H. (2021,â€Enhancement of traditional clothes pattern recognation using Convolutional Neural Networkâ€. In 2021 IEEE International Conference on Computing (ICOCO) (pp. 224-229). IEEE,2021.

Rangkuti, A. H., Athala, V. H., Luthfi, N. F., Aditama, S. V., Kerta, J. M., & Hidayah, A. A.,â€Improved accuracy traditional clothes pattern retrieval using VGG19 and Distance Metricsâ€, In 2021 IEEE International Conference on Computing (ICOCO) (pp. 360-365). IEEE,2021.

Gultom, Y., Arymurthy, A. M., & Masikome, R. J. (2018). Batik classification using deep convolutional network transfer learning. Jurnal Ilmu Komputer dan Informasi, 11(2), 59-66.

Avdibasic, E., Toksanovna, A. S., & Durakovic, B. (2022). Cybersecurity challenges in Industry 4.0: A state of the art review. Defense and Security Studies, 3, 32-49.

Tripathi, M. (2021). Facial image denoising using AutoEncoder and UNET. Heritage and Sustainable Development, 3(2), 89-96.

Durakovic, B. (2017). Design of experiments application, concepts, examples: State of the art. Periodicals of Engineering and Natural Sciences (PEN), 5(3).

B. Durakovic and A. Cosic (2019), “Impact of quality and innovation strategies on business performance of Bosnian B2B and B2C companies,†Sustain. Eng. Innov. ISSN 2712-0562, vol. 1, no. 1, pp. 24–33, 2019

Asipi, V., & Durakovic, B. (2021). Performance analysis of B2B and B2C companies: A case study of selected Balkan countries. Periodicals of Engineering and Natural Sciences (PEN), 9(2), 441-453.

A. M. Reza, (2017) Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol.38(1), 35–44.

L. G. Moré, M. A. Brizuela, H. L. Ayala, D. P. Pinto-Roa, J. L. V. Noguera, IEEE International Conference on Image Processing (ICIP). Parameter tuning of CLAHE based on multi-objective optimization to achieve different contrast levels in medical images, (2015), pp. 4644–4648, 2015.

Andrei, A. T., & Grigore, O. (2021, November). Unsupervised Machine Learning Algorithms Used in Deforested Areas Monitoring. In 2021 International Conference on e-Health and Bioengineering (EHB) (pp. 1-4). IEEE, 2021.

Esri, “How the Compute Accuracy For Object Detection tool works,†ArcGIS Pro, Esri. 2020, [Online]. Available: https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-analyst/how-compute-accuracy-for-object-detection-works.htm.

A. F. Gad, “Accuracy, Precision, and Recall in Deep Learning.†2020, [Online]. Available: https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/.

X. Zheng, Q. Lei, R. Yao, Y. Gong and Q. Yin, (2018). "Image segmentation based on adaptive K-means algorithm", EURASIP Journal on Image and Video Processing, 2018.