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Abstract— In literature, benchmark test functions have been used for evaluating performance of metaheuristic algorithms. 

Algorithms that perform well on a set of numerical optimization problems are considered as effective methods for solving real-world 

problems. Different researchers choose different set of functions with varying configurations, as there exists no standard or 

universally agreed test-bed. This makes hard for researchers to select functions that can truly gauge the robustness of a metaheuristic 

algorithm which is being proposed. This review paper is an attempt to provide researchers with commonly used experimental 

settings, including selection of test functions with different modalities, dimensions, the number of experimental runs, and evaluation 

criteria. Hence, the proposed list of functions, based on existing literature, can be handily employed as an effective test-bed for 

evaluating either a new or modified variant of any existing metaheuristic algorithm. For embedding more complexity in the problems, 

these functions can be shifted or rotated for enhanced robustness. 
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I. INTRODUCTION 

Strong relationship between metaheuristic algorithms and 

numerical test problems or test functions is found in existing 

literature. Generally, the introduction of any new 

metaheuristic algorithm is often accompanied with a set of 

benchmark test functions that are used in order to prove 

efficiency of the algorithm [1]. In fact, there exists no 

standard list of test functions. Different researchers choose 

different set of benchmark test functions, which is not 

backed by any justifiable reason for the choice made in this 

regard. Moreover, the number of functions in a test-bed also 

varies significantly from two functions to two dozen 

functions. The range of test functions includes different 

features; such as, unimodal and multimodal, regular and 

irregular, separable and non-separable, etc. These functions 

are also often rotated or shifted and also used with wider 

range of dimensions (from 10D to 1000D) to add complexity 

in optimization landscape. This creates significant gap for 

new researchers who want to validate any modified version 

of existing metaheuristic algorithm or completely new 

algorithm on benchmark test functions. Often, the 

researchers have not enough background knowledge on 

landscape structure, difficulties, modalities, separability, 

non-linearity, and various other aspects of optimization 

problems. 

Yang, in a survey paper [2] about benchmark functions, 

suggested to use a good set of benchmark functions for 

performance validation and comparison with other 

algorithms. However, there is no any agreed good list of 

functions among metaheuristic researchers. But, Yang 

elaborates the good set should contain functions with diverse 

characteristics and should be unbiased. Nevertheless, 

researchers choose a set of functions on which the target 

algorithm performs better than other selected counterparts. 

This raises an important concern over biasness towards 

algorithm’s suitable set of functions. Hence, in future, an 

important research can be conducted to find relationship 

between metaheuristic algorithms and benchmark test 

functions in substantial existing literature. 

 Since, looking for a set of benchmark test functions for 

testing an algorithm is a tedious job, this limited survey is an 

attempt to suggest commonly used benchmark test functions, 

representing unconstrained and single-objective optimization 

problems, from the related literature. The subsequent section 

explains test functions and different characteristics. Section 

III reports existing work performed on metaheuristic 

algorithm validation using benchmark functions. Section IV 

provides detail of commonly used benchmark test functions. 

Section V concludes and recommends future potential 

research in the related area. 
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II. BENCHMARK FUNCTIONS AND CHARACTERISTICS 

Benchmark test functions are fundamentally optimization 

problems presented in the form of mathematical numerical 

functions. These functions are optimized with a set of best 

suitable parameter values that help achieve best solution, 

where D is the problem dimensions. The best solution is 

hidden in large amount of sub-optimal solutions spread all 

over problem landscape with different number and types of 

hills and valleys. Any optimization algorithm, including 

metaheuristic algorithms, tend to find the best solution (but 

not always guaranteed to have obtained) as quickly as 

possible. The efficiency of any metaheuristic is gauged with 

its global searchability and local convergence ability. The 

algorithms that have better global searchability are hard to 

trap in sub-optimal (local minima or maxima) locations. At 

the same time, metaheuristics with efficient convergence 

ability are hard to miss any best solution within the 

neighbourhoods. 

There can be found many online resources that provide 

greater detail along with MATLAB and R language codes 

for the functions, see for example [3], [4], and Congress of 

Evolutionary Computing (CEC) [5], etc. According to 

characteristics (modality, basins, valleys, and separability, 

dimensionality) [2] which shape the landscape of the 

problem, the test functions can be grouped into following 

categories: 

 

A. Modality 

Modality defines the number of peaks in problem 

landscape. These peaks form local minima and global 

minima locations. 

Unimodal Functions: These functions have one valley and 

one global minima location where the best solution resides. 

Such functions are considered to be easy to solve, however 

shifting and rotating these functions increases difficulty. 

Metaheuristic algorithms can be tested on these functions for 

evaluating local searchability. 

Multimodal Functions: The functions in this category 

maintain more than one solutions but true global best is one. 

Such functions have many local minima locations but one 

true global minima. Hence any metaheuristic algorithm 

needs to travel all the landscape in order to find the true 

global best solution. These functions are difficult to solve 

and are good for testing global searchability of any 

algorithm. 

 

B. Basin 

A basin is a steep descent surrounded by high peaks. The 

multimodal functions contain more number of basins of local 

minima than global minima. Poor algorithms tend to be 

hampered in basins of local minima and fail to find the basin 

of global minima. 

 

C. Valleys 

A valley is an area surrounded by peaks and it is narrow 

in width and longer in length. Fundamentally, it is area with 

narrow change. The metaheuristic algorithms take longer 

time in these areas as local search tends to search these 

locations in detail. Unimodal and multimodal functions 

shape these valleys differently and in different frequency. 

 

D. Separability 

Separability defines the approach of optimizing variables 

of a function. Both unimodal and multimodal functions can 

be separable and non-separable as well.   

Separable Functions: If the function is separable, each 

variable xi can be optimized independently. Functions of this 

category are easy to solve. 

Non-Separable Functions: If the function is non-separable 

then all its variables have strong relationship with each other 

and cannot be optimized independently. Such functions are 

relatively difficult to solve. 

 

E. Dimensionality 

This property defines the area of search space. The larger 

the dimensionality, the larger is landscape, which means the 

larger number of sub-optimal locations. Functions with small 

dimensions are easily solved and most of the metaheuristic 

algorithms often perform best on these functions. However, 

for true performance evaluations, functions need to be highly 

dimensional. 

III. BENCHMARK FUNCTIONS USED IN LITERATURE 

In literature, different sets of test functions have been 

employed while either introducing new metaheuristic 

algorithm or proposing any modified variant of existing 

method. Not only this, a variety of dimensional settings can 

be found in different literature. This implies that there exists 

no agreed test-bed with standard configurations, which may 

guide new researchers to perform experiments to validate 

their proposed methods. In fact, it is claimed that such 

diversified approaches indicate problem solving ability of an 

algorithm on a specific set of problems. However, most of 

the benchmark test functions are often similar in nature i.e., 

numerical optimization problems, or to be more specific, 

unconstrained numerical problems. It is also found that 

researchers have certain choice of functions which they often 

repeat in multiple experimental studies. This limited review 

surveyed published literature which performs experiments 

on benchmark test functions to evaluate performance of 

metaheuristic algorithms. Following is reported some of the 

work that indicates what number of test functions has been 

used with what configurations, so that an idea of existing 

approaches can be established. 

Shi [6] used only 2 benchmark test functions (1 unimodal, 

1 multimodal), but with three different dimensions D=10, 20, 

and 30, while introducing novel Brain Storm Optimization 

(BSO) algorithm. According to the researcher, the small test-

bed was used as preliminary study to test the effectiveness of 

the proposed algorithm. In this study, the experimental 

results (mean, best, worst, and standard deviation) were 

averaged over 50 independent runs. In another experimental 

study, Karaboga and Gorkemli [7] tested the proposed 

Artificial Bee Colony (ABC) variant quick-ABC (qABC) on 

two unimodal and two multimodal test functions with 10 

dimensions. The experiments were executed 30 times with 

random initialization. The results in the form of mean and 

standard deviations of objective functions values found over 

30 runs were reported. In another ABC related research, 

Karaboga and Akay [8] compared the performances of ABC, 

Harmony Search, and Bees Algorithm on five test functions, 

two unimodals and three multimodals, with dimensions 
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ranging from 5 to 50. The researchers chose to present mean 

and standard deviation of 30 individual runs as performance 

evaluation matrix. 

In a different experimental work, He, Wu and Saunders in 

[9] presented a novel swarm-based metaheuristic algorithm 

Group Search Algorithm (GSA) when tested against 6 

benchmark test functions for convergence ability. Each 

function was solved with 30 dimensions and experimental 

results were averaged over 50 independent runs. Along with 

GSA, other evolutionary and swarm-based metaheuristic 

algorithms, including Genetic Algorithm (GA), Evolutionary 

Programming (EP), Evolution Strategies (ES), and PSO, 

were also tested on the same functions for comparisons 

based on mean and standard deviations of best values found 

over designated runs. Soliman and Rassem in [10] and Tang 

et al. in [11] both employed 8 test functions comprising of 

unimodal and multimodal categories with 30 dimensions. 

But, the number of runs in both the experiments was 

different, 30 in [10] and 100 in [11]. The prior work 

introduced Estimation of Distribution Algorithm (EDA), 

while Wolf Search Algorithm (WSA) was the proposed 

method in later research. 

Yang in [12] and Yang and Deb in [13] used same set of 

benchmark test functions which comprised of 2 unimodal 

and 8 multimodal in nature. The number of dimensions (2 to 

256) and number of runs (100) were same in both the 

experiments. The earlier introduced Bat Algorithm (BA), 

while the later work proposed Cuckoo Search (CS) 

algorithm. Both the methods were swarm-based 

metaheuristic algorithms. Interestingly, in both papers, the 

proposed algorithms were compared with GA and PSO in 

terms of mean and standard deviation values. The researches 

[14-19] also used ten test functions in experiments while 

introducing different metaheuristic algorithms with 

dimensions ranging from 2 to 30. For comparison with other 

algorithms, most of these works reported results in the form 

of mean and standard deviation values of best fitness values 

collected in 30 independent experiments. 

Another novel swarm-based metaheuristic algorithm 

Chicken Swarm Optimization (CSO) was introduced by 

Meng et al. [20] and it was evaluated on 12 test functions 

which made up 8 unimodal and 4 multimodal functions. The 

functions were solved with 20 dimensions and statistics of 

results were mean, standard deviation, best, and worst of 

best fitness values found over independent experiments 

executed 100 times. Same test functions were also solved by 

PSO, differential evolution (DE), and BA for comparison 

with the proposed CSO, as the proposed algorithm 

outperformed the counterparts. Zhang et al. [21] also 

performed experiments on almost the similar number of 

functions as in previous work while proposing a hybrid 

Firefly Algorithm (HFA). This research used 13 functions 

including 6 unimodal and 7 multimodal functions with 30 

dimensions and equal number of experimental runs. As usual 

in such type of research, this work also presented mean, 

standard deviation, best, and worst fitness values found over 

designated runs. In comparison with PSO, DE and FA, the 

proposed HFA produced promising results. The equal 

number of test functions were employed by Zheng et al. [22] 

but this time unimodal functions were 7 and 6 were the 

multimodal functions. This research proposed swarm-based 

metaheuristic algorithm so-called Ecogeography-Based 

Optimization (EBO) and compared with DE and 

Biogeography-Based Optimization (BBO) algorithms on 

these 13 functions with variety of dimensions: 10, 30, and 50. 

The mean and standard deviation of 60 runs were reported as 

statistics. 

The test-bed of Gandomi and Alavi [23] was majorly 

formulated by multimodal test functions (15) as compared to 

unimodal functions (5). These 20 benchmark functions were 

employed to evaluate the performance of the proposed novel 

bio-inspired Krill Herd (KH) metaheuristic algorithm. For 

robust statistical results, the experiments were conducted on 

test functions with 2, 4, 6, and 20 dimensions, and executed 

50 times. A wider range of counterpart metaheuristic 

algorithms were compared, which included PSO and DE 

variants as well as BBO, ACO, ES, and ACO. Cui at el. [24] 

and Xiang et al. [25] tested the proposed ABC variants on 

more than 20 test functions with dimensions 30, 50, and 100. 

These researches used 9 and 11 unimodal respectively, and 

13 and 15 multimodal functions respectively. The algorithms 

in both the experiments were executed around 30 times and 

mean and standard deviation of fitness values were reported 

for comparison. 

Vortex Search Algorithm (VSA) was proposed and 

evaluated on adequately large test-bed of 50 benchmark 

functions by Doğan and Ölmez [26]. Multimodal functions 

were more than double in number 34 to 16 unimodal 

functions. The number of dimensions ranged from 2 to 30 

and the experiments were run 30 independent times. As 

commonly found norm, this research also compared results 

in the form of mean, standard deviation, and best fitness 

values found over the specified runs. 

Based on limited survey performed for this research, as a 

summary, it can be established that minimum 2 test 

functions were used and at maximum 50 functions were 

employed. However, it is noteworthy to mention that 

sometimes, it is also found in research that around 100 test 

functions have also been used – though it is rear. Other than 

generalized functions, researchers have also shifted and 

rotated these function to increase complexity and evaluating 

metaheuristic algorithms more authentically. On average, the 

test-bed contained around 13 benchmark functions with 5 

unimodal and 8 multimodal functions. The common test-bed 

size was 10 and commonly used dimensions are 10, 30, and 

50. Mostly, the results were averaged on 30 independent 

runs with different random initializations, minimum and 

maximum runs found were 20 and 100, respectively. These 

statistics of survey summary are presented in Table I, where 

min., max., avg., com. are minimum, maximum, average and 

commonly used settings, respectively. 

 
TABLE I 

COMMONLY USED EXPERIMENTAL SETTINGS 

 

Item Min. Max. Avg. Com. 

Test-bed size 2 50 13 10 

Unimodal functions 1 16 5 1,4 

Multimodal 

functions 
1 34 8 6 

Dimensions 2 256 26 30, 50 

Experimental Runs 20 100 49 30 
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IV. COMMONLY USED BENCHMARK FUNCTIONS 

Since, it is already established in previous section that 

despite diversity in test-beds used by different researchers to 

evaluate the proposed methods, there is found a 

commonality in the experimental studies performed in 

literature. This is highly useful for new researchers to 

determine the type of test-bed based on guidelines provided 

by experimental studies performed by previous researchers. 

Keeping this in view, Table II presents 20 commonly used 

unimodal (U) and multimodal (M) benchmark functions with 

different dimensions of variables including minimum (Min. 

D), maximum (Max. D), and mostly used (Com. D) 

dimensional settings. 
TABLE II 

COMMONLY USED EXPERIMENTAL SETTINGS 

 

Function Nature Max. D Min. D Com. D 

Sphere U 256 3 30 

Rosenbrock U 100 5 30 

Quartic U 100 10 30 

Step U 100 5 30 

Schwefel 2.22 U 100 10 30 

SumSquare U 100 10 30 

Elliptic U 100 10 30 

Rastrigin M 100 2 30 

Griewank M 100 2 30 

Ackley M 128 5 30 

Michalewicz M 100 2 10 

Penalized1 M 100 10 30 

Schwefel M 128 10 30 

Weierstrass M 100 10 30 

Non-Continuous 

Rastrigin 
M 100 10 30 

Penalized2 M 100 10 30 

Schwefel 2.26 M 100 10 30 

Schaffer M 50 2 2 

Alpine M 100 10 30 

Himmelblau M 200 30 50 

 

The detail of the functions given above is as follow. In 

following functions D is referred to as problem dimensions 

and xi is a problem variable, whereas x* is optimum solution. 

1)  Sphere: Sphere is a unimodal and continuous function, 

which is considered as easy to solve. This function is 

evaluated using range between [-5.12,5.12] and its minimum 

solution is 0 which is located at f(x*)=[0,0,…,0]. It is 

mathematically expressed as: 

 

2)  Rosenbrock: This is also a unimodal function which is 

also known as banana function as its global minimum 

solution 0 is found in the narrow valley, with optimum 

solution f(x*)=[0,0,…,0]. The range of values of parameter 

values is often set to [-5, 10]. Mathematically, the function is 

expressed as: 

 

3)  Quartic: This function is a unimodal function like 

Sphere with degree 4. The best solution 0 is found at 

f(x*)=[0,0,…,0], whereas the search space is spread between 

[-1.28,1.28]. This function is expressed as: 

 

4)  Step: This function represents flat surface which is 

often considered as difficult to solve as no proper direction 

towards globally optimum location is easily found. Step is a 

unimodal function where minimum solution 0 located at 

f(x*)=[0,0,…,0] within the values spread over [-100,100] 

range. 

 

5)  Schwefel 2.22: This function is a unimodal with search 

space usually spread over [-10,10] values. The global 

minimum 0 is located at f(x*)=[0,0,…,0]. 

 

6)  SumSquare: This function is also known as Axis 

Parallel Hyper-Ellipsoid function which maintains no local 

optima but single global optima f(x*)=[0,0,…,0]. The 

function is normally evaluated with continuous values within 

the range of [-10,10]. The function expressed as: 

 

7)  Elliptic: This unimodal function with single global 

best solution 0 found at f(x*)=[0,0,…,0] within the search 

space of [-100,100]. The function expressed as: 

 

8)  Rastrigin: This multimodal function is difficult to 

solve as it presents numerous local minima locations where 

an optimization algorithm, with poor explorative capability, 

has high chances of being trapped. The function’s only 

globally best solution 0 is found at f(x*)=[0,0,…,0] within the 

domain of [-5.12,5.12]. The function mathematically written 

as: 

 

9)  Griewank: It is a multimodal function with widespread 

suboptimal solutions spread all over the search environment. 

This function has one global optimum solution 0 to be 

located at f(x*)=[0,0,…,0]. The function is solved with range 

of [-600,600]. 



222 

 

 

10)  Ackley: This multimodal function is one of the most 

commonly used test function for metaheuristic algorithm 

evaluation. It has numerous local minima but one global 

optimal solution found in deep narrow basin in the middle. 

The best solution 0 is found at f(x*)=[0,0,…,0] in domain [-

32,32]. 

 

11)  Michalewicz: It is another multimodal function used 

to test global search ability of a metaheuristic algorithm on 

high dimensional functions with small number of global 

optimum in the search space. This function is solved with 0≤ 

xi≤π. The globally best solution with D=2 is -1.8013, -

4.687658 with D=5, and -9.66015 with D=10. Mathematical 

expression of Michalewics is as follow: 

 

12)  Penalized1: Sometimes also referred to as 

Generalized Penalized-1 function is a difficult multimodal 

function. Its global optimum 0 is located at f(x*)=[1,1,…,1] 

in the domain of [-50,50]. Mathematically, Penalized1 

function is expressed as following, where the values of 

parameters are often set as k=100, a=10, and m=4. 

 
 

13)  Schwefel: This function is one of those hard 

multimodal function that are difficult to solve, as it contains 

several local minima locations, however global minima 0 is 

located at f(x*)=[1,1,…,1] in the domain of [-500,500]. 

Mathematically, this function is expressed as: 

 

14)  Weierstrass: It is another multimodal function which 

is solved in the domain of [-0.5,0.5] and optimum value 0 is 

located at f(x*)=[0,0,…,0]. Mathematically, this function is 

expressed as: 

 

 

15)  Non-Continuous Rastrigin: This is another 

multimodal function for finding minimized solution 0 at 

f(x*)=[0,0,…,0] in domain [-5.12,5.12]. The functions is 

given below: 

 

 

16)  Penalized2: This is multimodal function for finding 

minimized solution 0 at f(x*)=[0,0,…,0] in domain [-

5.12,5.12]. The function is given below: 

 

 

17)  Schwefel 2.26: This variant of Schwefel is a 

multimodal function with best solution 0 at f(x*)=[0,0,…,0] 

in domain [-500,500]. The function is written as: 

 

 

18)  Schaffer: Schaffer is some multimodal function 

where global minima is either small or close to local minima. 

Hence, this requires a metaheuristic algorithm to have 

efficient search strategy to solve this problem. The best 

solution 0 is found at f(x*)=[0,0,…,0] in the range of [-

100,100]. The function is mathematically defined as: 

 

19)  Alpine: It is a multimodal function where global 

minima 0 is found at f(x*)=[0,0,…,0] in the range of [-10,10]. 

The function is written as: 

 

20)  Himmelblau: This is a multimodal function. It is 

usually solved with continuous values in the domain of [-

6,6]. The best solution 0 can be found at four locations: 

f(x*)=[3.2,2.0], f(x*)=[-2.805118,3.131312], f(x*)=[-
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3.779310,-3.283186], and f(x*)=[3.584428,-1.848126] in 2 

dimensional space. The function is defined as:  

 

V. CONCLUSION 

Benchmark numerical test functions have been widely 

used as performance evaluation tools in metaheuristic 

literature. This is also considered that metaheuristic 

algorithms that perform well on these functions are able to 

solve real-life hard optimization problems. It is found that 

different researchers choose different sets of functions with 

different experimental configurations, yet there exist 

common experimental settings that may guide other 

researchers to follow the trend and gauge robustness of any 

newly proposed metaheuristic algorithm. In this regard, this 

survey provided a list of commonly used benchmark test 

functions, including unimodal and multimodal, which can be 

readily employed and enhanced by rotating and shifting the 

listed functions, for extended complexity. 
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