
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Overview of Software Re-Engineering Concepts, Models, and

Approaches

Lim Fung Ji a,*, Tan Bee Sian b
a Department of Software Engineering and Technology, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
b Department of Computer Science and Embedded Systems, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia

Corresponding author: *limfj@tarc.edu.my

Abstract— Legacy systems face issues such as integrating new technology, fulfilling new requirements in the ever-changing environment,

and meeting new user expectations. Due to the old complex system structure and technology, modification is hardly applied. Therefore,

re-engineering is needed to change the system to meet new requirements and adapt to new technology. Software re-engineering generally

refers to creating a new system from the existing one. Software re-engineering is divided into three (3) main phases: reverse engineering

alteration and forward engineering. Reverse engineering examines, analyzes, and understands the legacy system in deriving the abstract

representation of a legacy system; then, through necessary alterations such as restructuring, recording, and a series of forward

engineering processes, a new system is built. This paper introduces the concepts of software re-engineering, including the challenges,

benefits, and motivation for re-engineering. In addition, beginning with the traditional model of software re-engineering, this paper

provides an overview of other models that provide different processes of software re-engineering. Each model has its unique set of

processes for performing software re-engineering. Furthermore, re-engineering approaches show various ways of performing software

re-engineering. Software re-engineering is a complex process that requires knowledge, tools, and techniques from different areas such

as software design, programming, testing, et cetera. Therefore, monitoring the re-engineering process to meet the expectations is

necessary.

Keywords—Legacy system; software re-engineering models; reverse engineering; software re-engineering approaches.

Manuscript received 25 Aug. 2024; revised 25 Oct. 2024; accepted 12 Nov. 2024. Date of publication 31 Jan. 2025.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Software systems are dynamic and constantly evolving for

various reasons, such as new user requirements, technological

changes, and operation environments. However, legacy

systems may require redesigning and reconstructing part(s) or

the entire system to meet these evolving needs. As technology

is developed speedily, for example, when smartphones
become common, most application systems are built to be

used in smartphone devices [1], and the rise of IoT (Internet

of Things) technologies and their adoption in industries [2].

Therefore, software re-engineering comes into play for old

systems to adapt to new technology environments. It involves

studying the existing system to derive the abstract

representation of the system and making the necessary

changes to produce a new system that aligns with the evolving

requirements. Not only does the software require

reengineering, but hardware systems also require

reengineering to improve their performance, for example, the

renovation of the Ferrari 178H1 Load Handling Crane system

to reduce the damage to the control unit [3].

The main motivation behind software re-engineering is to

address issues such as lack of knowledge of the legacy system

when the developer has left the company, the system is built

using obsolete programming language, and the system's

functionalities not being understood [4]. In addition, legacy

systems may not be compatible with new technology; the

monolithic architecture causes the creation of single-point

failure, difficult to integrate with other systems [5].

These issues may arise due to the system's aging, making it
challenging to maintain or update. Additionally, the need for

re-engineering is also driven by enhancement purposes, such

as improving the adaptability of web applications on different

networks and devices [6]. This is particularly crucial in

today's digital age, where users access web applications on

various devices and platforms.

Moreover, software re-engineering may entail utilizing

novel technologies like cloud technologies to improve the

46

JOIV : Int. J. Inform. Visualization, 9(1) - January 2025 46-56

system's functionality [7]. Modernizing legacy systems also

includes migrating system architecture, from monolithic to

microservice architecture, to overcome and reduce the tight

coupling between modules in monolithic architecture [5].

Modernization aims to prevent the legacy system from

becoming obsolete and difficult to maintain [8].

A. Benefits, Challenges, and Risks in Software Re-

engineering

The problems of legacy systems include using old

technology, complex codes, and challenges to modify and

expand. These characteristics of legacy systems may lead to

higher maintenance costs, hiring of professionals to maintain

old codes, and rarely providing the requirements to support

the business [9]. Reengineering the existing software has

various benefits compared to developing a new system from

scratch. First, re-engineering reduces the maintenance cost of

the legacy system and develops new software [10]. Secondly,

re-engineering of databases to obtain the benefits of another
type of database, for example, re-engineering conventional

relational databases and migrating to NoSQL for storing

unstructured data [11], and another example is adapting to

fruitful computational resources in cloud-based servers [6].

Software re-engineering can also avoid cost and security risks

caused by compliances with industry standards and outdated

security measures [12].

Re-engineering software is a complicated and intricate

process that deals with the intricacies of an existing system.

This process can pose several challenges for the re-

engineering team, for example, lack of knowledge about the

legacy system, incomplete documentation, and the impact of
system components [13]. One of the team's challenges is that

users expect the new system to have functionality and

performance similar to the old system, which requires

additional effort in testing the software [14]. When upgrading

a document information system, ensuring no data loss during

the migration process is challenging, as the process is

complex and requires careful planning and execution [15].

According to Zabidi et al. [13], the software community needs

to deal with the modification of ten million legacy code

statements for improvements, and the improvement depends

on the knowledge and experiences of the developers in
applying an ad hoc approach. It is also challenging for the

development team to analyze the impact and risk of the

modifications. Re-engineering is a complicated and time-

consuming process that requires the consideration of

downtime and data security for some industries, such as banks;

this will lead to companies using outdated technology [16].

Embedded software re-engineering faces challenges in

understanding its behavior. For instance, it is hard to

comprehend a real-world implicit state machine from code.

These are frequently accomplished by evaluating and setting

static flags throughout the code so that changing a flag in one
call alters the way the function behaves in a later call.

Embedded control software shows much stateful behavior

since discrete steps must be taken for every continuous

process [17].

A software analyzer is required to perform software

analysis during the reverse engineering stage of software re-

engineering. Canfora et al. [18] studied reverse engineering

challenges using reverse engineering tools such as software

analyzers to perform static, dynamic, and historical analyses.

The challenges are related to the ability requirements of the

tools. In addition, the authors studied the challenges of

developing software views. There are also challenges in

transforming software architecture into modern architecture.

The challenges of the re-engineering process are described in

Table 1.

TABLE I

CHALLENGES FACED IN SOFTWARE RE-ENGINEERING

Tasks Challenges

Static analysis Ability to interpret non-compliant code
and various language variations. Different
characteristics in programming languages

make it difficult to interpret the codes
completely [18].

 Ability to extract information that's
helpful for reverse engineering projects.
In some cases, there is no need to have a
complete abstract syntax tree
representation of the program. It only
requires relevant information for reverse

engineering [18].
 Ability to retrieve the semantics of a

program. The analyzer must be able to
perform a set of analyses, which is
absolutely required in reverse engineering
[18].

Dynamic
Analysis

It is crucial to be able to compile and
execute a program when analyzing an

intermediate version of it. This may not
always be possible, especially if the
program is incomplete and grabbed from
a versioning system. Therefore, it is
necessary to ensure that the tools and
resources are available to analyze the
program [18] comprehensively.

 Choosing the right inputs to execute a
system is crucial when performing

dynamic analysis, as the results heavily
depend on the inputs used. Therefore, it is
essential to carefully consider the
approach taken when reverse engineering
[18].

 Filtering and extracting relevant
information from significant execution
traces is a crucial challenge for better

understanding [18].
 The reverse engineer may not have access

to the system’s code for certain types of
systems but can only run the application.
This is known as a black-box analysis,
and the tool is required to perform it [18].

Historical
Analysis

The tools should be able to integrate
heterogeneous software repositories by

linking changes and issues. This may face
challenges such as the accuracy of
information [18].

 The tools should be able to analyze and
differentiate changes made to software
artifacts [18].

TABLE I

CHALLENGES FACED IN SOFTWARE RE-ENGINEERING (CONTINUED)

 Grouping related changes together would
enhance historical analysis by providing a
comprehensive view of the
development/maintenance activity [18].

47

Building Software

Views

Powerful query languages are necessary

to build different views from the
information base populated by analyzers
[18].

 The ability to rebuild high-level
information from low-level artifacts is
crucial.

 Correctly visualizing abstracted
information is crucial for software

visualization as it significantly affects the
effectiveness of program analysis and
design recovery techniques for
developers [18].

Architecture
Modelling

When the requirements are not
compatible with the design, it is time-
consuming. This is due to the developer's
insufficient understanding [19].

Architecture
Refactoring

This activity is time-consuming, and it
isn't easy to map the structures between
different architectural patterns [19].

Planning on
architecture
migration

Planning is crucial in migrating software
architecture, especially in determining the
order of the migration process/activities
[19].

Evolutionalization If the architecture transformation process
fails, a more complex recovery process

will be met [19].
Process Support The consideration of process, tools, and

human decision support to transform
legacy systems into mobile applications
[20].

Evaluation on
Usefulness

The evaluation of the effectiveness and
usability of mobile applications (after
conversion from legacy system) [20].

Transforming software architecture into modern

architecture involves possible risks that need to be considered

and evaluated before the re-engineering process. The risks are

shown in Table 2.

TABLE II

RISK OF RE-ENGINEERING

Risks Description

Costs Monetary-related risks such as high
maintenance costs, backup costs, and
insignificant profit [21]

Time Delay The reengineering process is slow due to
insufficient knowledge of the existing
system, budget run-off, management
decisions, and mismatched architecture [21].

Testing consumes time and costs in
reengineering [22].

Performance Performance-related risks include
inappropriate use of a reengineering
approach, unmatched results, and
inappropriate data restructuring [21].

User
Satisfaction

Challenging in meeting user requirements in
the competitive business environment [21].

Bugs Users may suffer from bugs in the re-

engineered product due to insufficient or
inappropriate testing [14].

II. MATERIAL AND METHOD

A. Software Re-Engineering Models

Re-engineering involves interpreting and analyzing the

existing system code, implementing required changes,

integrating revised modules, and testing them. The existing

software system serves as the input for the re-engineering

process, while the re-engineered and better-quality software

serves as the output of re-engineering. The process of

software re-engineering involves three main processes:

reverse engineering, alteration, and forward engineering.

Therefore, the re-engineering process can be illustrated and

represented using a diagram shown in Fig. 1 [23].

Fig. 1 General model of software re-engineering [23]

Reverse engineering is a technological procedure that

involves the reverse study of a target product to extract design

components like the flow of process, functional

specifications, and organizational structure [24]. The system

codes are analyzed during reverse engineering to produce a

higher-level representation of the current system through a

series of analytical works. The abstraction of system
representation will be increased throughout the reverse

engineering process. Then, forward engineering will continue

to produce the new system through the four (4) levels of

process, from conceptual to implementation [23]. During the

re-engineering process, necessary alterations are applied to

the system according to the requirements, which include re-

coding, re-specifying, and re-design [25].

There are strategies to implement the changes to improve

the system. One of the strategies is software revamping,

which includes updating antiquated technological

infrastructure to improve functionality, performance, and

conformity with modern standards [26], for example, to
overcome the limitations of monolithic gaming software

architecture with cloud-oriented distributed engines [27].

Software restructuring or re-modularization is a regularly

used strategy for system changes during software re-

engineering. Software restructuring is to ameliorate the

existing internal quality of the system without affecting the

system’s external behavior [28]. Another strategy is

rearchitecting and modifying an application's architecture

using more contemporary computer theories. For example, to

change the software architecture to work in heterogeneous

hardware architecture [29]. Replace strategy substitutes the
entire system altogether [30]. These modification strategies

enhance the legacy system in terms of codes, data structures,

and architecture to meet new user requirements and

organizational objectives.

Another rehosting strategy is to migrate the legacy system

into a new environment with minimal code changes and

functionality changes. Refactoring is reorganizing and

enhancing already-written code to make it more readable and

48

efficient without compromising its essential features.

Transferring legacy programs to an alternative platform or

infrastructure is known as re-platforming. When the legacy

system cannot be modernized, a complete system replacement

is considered [12].

Forward engineering produces a new system based on the

output of reverse engineering. The forward engineering

process starts from a high-level system representation and

produces the new system's implementation-level codes. As

the forward engineering process progresses, the system
representation's abstraction level decreases as more

information is added, moving down to the implementation

level. This process involves creating a new system designed

to meet the new requirements and specifications while

ensuring that it is efficient, reliable, and maintainable.

The generic model shows the software re-engineering

process based on the level of system representation. A

software re-engineering process model indicates six (6) main

processes [31], as shown in Fig. 2.

Fig. 2 Software re-engineering process model [31].

According to [32], the description of each process is as

follows:

1) Inventory Analysis: Identify and analyze the

information of the software program items based on a list of

the required data to be collected.

2) Document Restructuring: Re-documentation is

performed on an existing document. Normally, the existing

document for a legacy system is weakly documented.

3) Reverse Engineering: Extract information regarding

the existing system’s architecture, design, and data.

4) Code Restructuring: Restructure the existing codes for

maintainability, testability, and ease of understanding.

5) Data Restructuring: The existing data structure and

model are analyzed and defined. Identify data attributes are

identified.

6) Forward Engineering: Improve the quality of the

existing system by recovering existing design information and

performing necessary modifications or organization. This is

also known as reclamation or renovation.

Another model for software re-engineering is the horseshoe

process model. The horseshoe model depicts a software re-
engineering process where reverse engineering derives the

existing system’s representations of different abstract levels

through horizontal transformation. These representations act

as input for generating new source code in the forward

engineering process [33]. The model shows the process of re-

engineering legacy systems into new ones. This model has

been used as a reference for several works in re-engineering

software architecture, user interface, and source code. Fig. 3

[33] shows the horseshoe re-engineering process model

diagram.

Fig. 3 Horseshoe model for re-engineering [33]

A phase model for re-engineering embedded automotive

software is based on the SEI’s horseshoe model but with

additional phases: the preceding identification phase and a

succeeding validation phase. The phase model concerns the

function and source levels [34]. Fig. 4 [34] shows the phase

model for re-engineering.

Based on the complexity index, the first stage identifies the

functions with the lowest maintainability quality. The

identified artifact then needs to be understood for its
complexity. The bad smell pattern is used to detect structural

deficiencies. Design principles and patterns are applied to

create new solutions with a comprehensible software

structure. The last stage is to verify the new solution against

the requirements [34].

Fig. 4 Phase model for re-engineering [34]

In the hybrid re-engineering model [35], reverse and

forward engineering are performed in parallel. For example,
after the feasibility study, the next stage is requirement

specification, where new requirements are gathered and

49

mapped with the existing software requirement specification

for requirement re-specification. Then, the new software

specification will be used to map with the existing design for

software re-design purposes. The process will then proceed to

the following phases until the new system is derived. This

model performs the whole re-engineering process (reverse

engineering, modification, forward engineering) at every

phase. The hybrid model is depicted in Fig. 5 [35].

Fig. 5 Hybrid re-engineering model [35]

Nowadays, the website is used for different purposes, such

as online learning, shopping, and job seeking [36]. In

addition, the web application for electronic banking provides

more convenience to users in performing bank transactions

[37]. Web re-engineering integrates new web applications

while partially replacing existing legacy components. Dhiman

has proposed a V model for web re-engineering [38]. The V

model comprises various re-engineering processes such as
web page, transaction, application migration, and graphic

design re-engineering. These processes help reconstruct,

refactor, and reengineer legacy web systems. In the V model,

the product must go through the whole web development life

cycle, passing the entire testing cycle. Fig. 6 [38] shows the V

model for web re-engineering.

Fig. 6 V model for web re-engineering [38]

The left side of the V model describes the design and

coding stages, while the right side shows the necessary

validation stages for the products. The idea is based on the

traditional V model of software development. The stages

involved in the V model for web re-engineering (starting from

top left) are as follows [38]:

1) Requirements gathering for a new web application:

This stage collects the new requirements for the intended new

web application through various techniques, such as

interviews, discussions, model sites, etc. In addition, the new
system objectives are determined through requirement

analysis.

2) Analysis of existing legacy system/specification

building: Analyze the existing system structure and functions

and identify possible new requirements. Identify the

possibility of component reuse.

B. Migration planning and architectural transformation

Perform planning on the resources and implementation

plan for the migration and transformation to the target system.

1) Re-engineering of application migration: This is the

stage where re-engineering works, such as architecture

restructuring and code changes, are applied to reengineer the

old system.

2) Test planning & strategizing: Created a test plan and

determined the test strategy to evaluate the system's meeting

of the new functional and non-functional requirements.

3) Test execution: Perform various tests according to the

test plan.

4) Regression testing: Regression tests are performed to

check the effects of change on the system.

5) User Acceptance testing: The system is being tested to

meet users' expectations.

Using the V-model with the re-engineering process

improves website maintainability and effectiveness through

better validation, verification, and production. The Re-V

model [8] was proposed for re-engineering a legacy system.

The proposed model is based on the software development V-

model, which shows the application of tests at different levels

during software development. This model relates different

levels of testing during the re-engineering process to test and

validate the system. The model consists of two main parts: the

deconstruction of the legacy system and the reconstruction of

the new system.

Deconstruction of legacy system. The developers will try
to understand the existing system's features, user stories, and

functionalities by deconstructing the legacy system. The

process is conducted until the code level of the existing

system. Reconstruction is performed, which includes

restructuring of the code. The legacy code will be transformed

into new codes. Unit test cases are generated and performed

during this stage to ensure the function unit meets the

expectations. Furthermore, integration and acceptance tests

validate the new system’s functionalities. Fig. 7 [14] depicts

the process in Re-V model.

50

Fig. 7 Re-V model for legacy system re-engineering [14]

Fig. 8 Source code re-engineering reference model [39]

The Source Code Re-engineering Reference Model

(SCORE/RM) in Fig. 8 [39] defines the framework for the

process of software re-engineering. The framework defined

by SCORE/RM (SCORE/RM framework) consists of four (4)

elements, as in Table 3.

TABLE III

SCORE/RM ELEMENTS [39]

Elements Description

Function Represents the process of reengineering.
Eight (8) functions form the eight (8) layers
of SCORE/RM.

Metrication A set of metrics is applied before and after
each function layer is executed.
These metrics are used to evaluate software
improvement.

Documentation Consists of information regarding the old

and new systems, such as specifications,
constraints, and implementation
information

Repository
Database

Stores items involved in re-engineering
process such as source code, metrication,
and documentation.

The eight (8) layers of the SCORE/RM function perform

the re-engineering tasks to deliver the intended new system.

The top six (6) layers are the reverse engineering process, and

the bottom three (3) are the forward engineering process. The

layers of functions are described in Table 4.

TABLE IV

SCORE/RM FUNCTION LAYERS [39]

Function

Layer

Description

Encapsulation This procedure is used to capture and
manage the source code so that it may
consistently serve as the base of reference
for the subsequent layers

Transformation This process alters the source code's control

flow to organize and structure it.
Normalization The stage where data and its structures are

examined.
Interpretation The starting process is to derive the first

portion of the software.
Abstraction Determine and identify the object hierarchy

from the annotated and rationalized source
code.

Causation The forming of a hierarchy structure is
examined to serve as the foundation for the
requirements specification.

Regeneration Implementation of a new system based on
the functional specification and
requirements.

Certification Analysis of the new software demonstrates
that it is compliant with the source code,
meets the requirements, and operates as

intended.

SCORE/RM systematically rationalizes and rebuilds

software by comprehending its functions and requirements
according to established software engineering practices.

Fig. 9 Iterative re-engineering process model [25]

An iterative re-engineering process model is proposed by
Bianchi et al. [40]. The re-engineering process in this model

is predicated on the progressive evolution of a legacy system

by the sequential re-engineering of the system's components,

ensuring its coexistence through a series of transitional stages.

The legacy and new systems can coexist during the re-

engineering process. The legacy and new systems share

metadata, data, and operative environment. Fig. 9 [40] shows

the process model of iterative re-engineering.

Fig. 10 [40] shows the architecture during the

reengineering process. The legacy components still exist and

operate while the new components are built. With the
coexistence of legacy and new systems as one architecture

during reengineering, the iterative process model guarantees

the continuity of system operation to satisfy user needs. In

addition, the freezing time due to the reengineering process

will be reduced.

51

Fig. 10 System architecture during the re-engineering process [40]

Fig. 11 Dual spiral re-engineering model [23]

Another software re-engineering model is the dual spiral
re-engineering model. The dual spiral model's re-engineering

process requires both old and new systems to work together,

with the old system's functionalities decreasing. In contrast,

the new system’s functionalities increase throughout the

process. Proxy is applied for integration purposes of both

systems during the re-engineering process. The increasing and

decreasing functionalities of the old and new systems are

depicted in Fig. 11 [26], and the incremental and decremental

spiral process is shown in Fig. 12 [23].

The dual spiral re-engineering model consists of three (3)

main steps: the division of functionalities, the start of the
spiral procedure, and the termination of the spiral procedure.

In the first step, the functionalities of the old system are

divided into sets of functionality. Then, these functionalities

will be put into the decremental spiral process to remove

functionalities in the old system and, simultaneously, the

incremental spiral process to add new functionalities. This

represents the transition of functionalities from the old to the

new system.

The transition of functionalities may not be in the way of a

one-to-one functionality transition; it could be a one-to-many

or one transition. The re-engineering process (spiral process)

will stop until all functionalities are transmitted into a new
system and users are approved.

A cloud migration metamodel is proposed for migrating

legacy systems to the cloud. This metamodel is created

through a series of processes that gather knowledge from the

software development cycle and different re-engineering

models from multiple sources through a literature review.

Then, the activities and tasks for various phases in the

migration life cycle are analyzed, categorized, and validated

[41]. The metamodel provides a framework for planning and

managing the methodical, situation-specific system migration

to the cloud.

52

Fig. 12 Incremental and decremental spiral process [23]

Fig. 13 The conceptual model of legacy systems’ modernization for citizen-

centric digital government [42]

Fig. 13 shows the conceptual model for modernizing the

legacy system for citizen-centric digital government. This

model is built based on the analysis of the concerned factors

and provides guidelines for performing modernization [42].

The four primary aspects of the conceptual model are the

organization, process, product, and human. Every aspect has

some components and factors that are pertinent to its

classification. The conceptual model has adopted four

models, that are: Systems and Software Quality Model

(ISO/IEC 25010:2011), Data Quality Model (ISO/IEC

25012:2008), Renaissance Method, and SERVQUAL Model

to ensure the quality of the modernized system. SERQUAL is

a research tool designed to assess service quality by gathering
respondents' expectations and views along five service quality

criteria [43]. The described models in this section have shared

a common ground in the overall re-engineering process,

which is to derive the representation of the existing system

(reverse engineering), perform a necessary transformation

(alteration), and produce a new system (forward engineering).

However, with the fast advancement of technology, such as

blockchain and artificial intelligence, these technologies

affect how systems are built and maintained. Therefore, the

discussed model may need to evolve in conjunction with the

evolution of technology. The comparison of re-engineering
models is shown in Table 5.

TABLE V

COMPARISONS OF SOFTWARE RE-ENGINEERING MODELS

Elements Description Limitations

Generic model Showing the three
(3) main processes
of software re-
engineering [23].

The re-engineering
process involves the
whole system;
therefore, the target
system is frozen

during the re-
engineering process
[23].

Phase model The model is
derived from the
SEI’s horseshoe
model but with
additional phases: a
preceding

identification phase
and a succeeding
validation phase. It
is for re-
engineering
automotive
software [34].

This is different
from the horseshoe
model, which
describes the re-
engineering at the
architecture,

function, and source
levels. The phase
model focuses on the
source and function
levels [34].

Hybrid re-

engineering
model

A model where

reverse engineering
and forward
engineering are
performed in
parallel [35].

No metrics are

available to assess
the performance and
scalability of the
new system [35].

V-model for
re-engineering

V model for web
re-engineering
starts with

requirement
gathering for a new
system, analyze,
and transformation
of the legacy
system, followed by
different types of
tests [38]

The V-model of
development has
limitations, such as

there is no iteration
of the re-engineering
process, and
unsuitable for a
system where
requirements are
rapidly changing
[44]. Therefore, both

53

Elements Description Limitations

Re-V model
for re-
engineering

Based on the V-
Model of
development, the
re-engineering of
the legacy system
with a relevant
level of test design
to validate the new

system at different
levels of testing
[14]

the V-model and Re-
V model for re-
engineering may
have similar
limitations

SCORE/RM
model

The model
reengineers the
legacy system from
the source code
through eight (8)

layers of the
process [39].

To incorporate
supporting tools used
in formal
specifications into
SOCRE/RM, they

need to be improved
[39].

Iterative re-
engineering
process model

The re-engineering
model allows the
coexistence of old
and new systems
during re-
engineering [40].

Need to build a data
locator and manage
the residual database
during the re-
engineering process
[40].

Dual spiral re-

engineering
model

It consists of a two-

spiral process,
which transmits the
functions of the old
system into the new
system’s functions
[23].

The model divides

the system based on
functionality but not
module [23].
Therefore, it may
take more work to
divide the legacy
system's
functionality with

convoluted codes
that deviate from
design principles.

Conceptual
model for
legacy system
modernization.

A conceptual model
guiding the legacy
systems'
modernization
towards the citizen-

centric digital
government. [42].

To give
organizations
consistent direction,
the modernization of
legacy systems must

consider all pertinent
elements and factors
from many
perspectives,
including citizen-
centric requirements
[42].

III. RESULTS AND DISCUSSION

A. Software Re-Engineering Approaches

The first approach discussed is the Big Bang approach.

This approach replaces the existing system with the new one

at once. The Big Bang approach is typically required when

there is a need for direct problem-solving [45]. However, the

strength of applying this approach is that it requires a huge

upfront investment and a long time for return [46]. The

incremental approach breaks the re-engineering process into
different phases, which are executed gradually, and each

phase is to re-engineer certain parts of the software.

The incremental approach shows a low-risk way of re-

engineering but needs a well-defined way to ensure it is

performed in a stable, less risky, and cost-efficient way [46].

The iterative approach splits the system into different

packages, and re-engineering activities are performed on the

parcel to derive the new system package. The process

continues until all packages are re-engineered. This approach

requires the existence of documentation and code [47].

Partial approach reengineering separates the system into

part(s) to be re-engineered and part(s) not to be re-engineered.

After the reengineering process, the reengineered parts are

combined with the non-reengineered parts to become the new

system [48]. The approaches discussed by several authors
[46]-[48] reengineered the legacy system in a division-

oriented way, which divided it into parts.

Wrapping [16] is another approach that encloses the

current code within a contemporary interface. External

entities communicate and connect to the system through the

interfaces provided in the wrapper. A re-engineering case of

Java-based Object-Oriented software is performed by

applying the Scrum approach of the Agile framework. This

approach performs the re-engineering tasks within different

sprints to re-engineer the selected classes in the software

program. For example, reverse engineering, alteration, and
forward engineering tasks are performed in Sprint 1.0. The

objectives of this approach are to reduce the complexity and

improve the maintainability of the software [49].

A model-driven re-engineering approach, the MLSAC

(Migration of Legacy Software Applications to the Cloud)

framework, is applied in the re-engineering of software in

cloud computing. MLSAC pulls together various cohesive,

empirically validated cloud-specific approach fragments from

research and application. From this collection, a meta-model

(or meta-method) and matching instantiation guidelines are

built. Metamodeling serves as a representational layer for re-
engineering methodologies and is the foundation of MLSAC.

The principles of the design science research approach guide

the creation and assessment of MLSAC. In a particular case

of re-engineering to cloud platforms, the metamodel can also

be used to develop and manage custom re-engineering

techniques [50].

Another approach modernized and transformed a legacy

system into a mobile-based application through processes

based on three crucial aspects: process activities, process

view, and process support. These aspects include

modernization activities such as planning, modeling,

transforming, and evaluating [16].
A previous study proposed a re-engineering framework for

open-source software using the decision tree approach as cited

in [51]. This approach provides a guideline for identifying re-

engineering requirements. Re-engineering approaches

transform the existing legacy system into an enhanced new

system. In other words, these approaches are considered part

of the legacy system modernization approach. Re-engineering

approaches can be merged to fulfill the modernization needs

but must include consideration of risk, budget, and time [23].

IV. CONCLUSION

From the reengineering models and approaches discussed

in this paper, software reengineering involves multiple

processes and activities to transform the legacy system into a

new system. The reengineering process is complex; it requires

the developer/engineer to have knowledge and skills in

different perspectives of technologies. In addition, software

54

reengineering must consider costs, resources, risks, and

organizational goals.

REFERENCES

[1] P. Huriati, H. Azmi, Y. Wati, D. Meidelfi, and T. Lestari, “Black box

testing on the online quiz application using the Equivalence Partitions

method,” International Journal of Advanced Science Computing and

Engineering, vol. 2, no. 2, pp. 51–56, Aug. 2020,

doi:10.30630/ijasce.2.2.48.

[2] A. Katiyar and P. Kumar, “A Review of Internet of Things (IoT) in

Construction Industry: Building a Better Future,” International

Journal of Advanced Science Computing and Engineering, vol. 3, no.

2, pp. 65–72, Aug. 2021, doi: 10.30630/ijasce.3.2.53.

[3] L. Markis, P. S. Wardana, and A. Syawaldipa, “Renovation of Crane

Control System of Reach Stalker Ferari 178h1 Using Avr

Atmega2560,” International Journal of Advanced Science Computing

and Engineering, vol. 4, no. 2, pp. 113–120, Aug. 2022,

doi:10.30630/ijasce.4.2.86.

[4] M. Nagl and B. Westfechtel, “Reverse and Reengineering for Old

Systems is Seldom Complete,” 2024, pp. 179–198. doi: 10.1007/978-

3-031-51335-0_9.

[5] Q. Z. Ang, P. C. Yau, C. S. Sum, Q. Cao, and D. Wong, “Legacy

Modernization: A Cloud Migration Strategy with Serverless

Microservice Architecture,” in Proceedings - 2023 International

Conference on Intelligent Computing and Control, IC and C 2023,

Institute of Electrical and Electronics Engineers Inc., 2023, pp. 59–63.

doi: 10.1109/IC-C57619.2023.00017.

[6] K. An, “Enhancing Web App Execution with Automated

Reengineering,” in The Web Conference 2020 - Companion of the

World Wide Web Conference, WWW 2020, Association for Computing

Machinery, Apr. 2020, pp. 274–278. doi: 10.1145/3366424.3382087.

[7] O. Kernytskyy, A. Kernytskyy, and V. Teslyuk, “The Synthesis

Method for Specifications and Requirements in the Process of IT

Project Reengineering,” in International Scientific and Technical

Conference on Computer Sciences and Information Technologies,

Institute of Electrical and Electronics Engineers Inc., 2023.

doi:10.1109/CSIT61576.2023.10324175.

[8] N. Somogyi and G. Kovesdan, “Software Modernization Using

Machine Learning Techniques,” SAMI 2021 - IEEE 19th World

Symposium on Applied Machine Intelligence and Informatics,

Proceedings, Institute of Electrical and Electronics Engineers Inc., Jan.

2021, pp. 361–365. doi: 10.1109/SAMI50585.2021.9378659.

[9] R. Capuano and H. Muccini, “A Systematic Literature Review on

Migration to Microservices: A Quality Attributes perspective,” in

2022 IEEE 19th International Conference on Software Architecture

Companion, ICSA-C 2022, Institute of Electrical and Electronics

Engineers Inc., 2022, pp. 120–123. doi: 10.1109/ICSA-C54293.2022.

[10] J. Singh, K. S. Dhindsa, and J. Singh, “Software quality improvement

and validation using reengineering,” Journal of Engineering Research

(Kuwait), vol. 9, no. 4 A, pp. 59–73, 2021, doi: 10.36909/jer.

[11] B. Namdeo and U. Suman, “Cost Model for Database Reengineering

from RDBMS to NoSQL,” in 4th International Conference on Recent

Trends in Computer Science and Technology, ICRTCST 2021 -

Proceedings, Institute of Electrical and Electronics Engineers Inc.,

2022, pp. 164–168. doi: 10.1109/ICRTCST54752.2022.9781890.

[12] T. Khan. “Legacy Application Modernization: A Comprehensive

Approach to Modernize Your Business.” IBM Blog.

https://www.ibm.com/blog/legacy-application-modernization/

[accessed Aug. 24, 2024].

[13] W. A. Zabidi, M. E. Rana, and C. R. A. P. Ramachandiran, “Issues and

Challenges in Existing Re-engineering Methodologies of Object

Oriented Systems,” in MysuruCon 2022 - 2022 IEEE 2nd Mysore Sub

Section International Conference, Institute of Electrical and

Electronics Engineers Inc., 2022.

doi:10.1109/MysuruCon55714.2022.9972365.

[14] H. Khodabandehloo, B. Roy, M. Mondal, C. Roy, and K. Schneider,

“A Testing Approach while Re-engineering Legacy Systems: An

Industrial Case Study,” in Proceedings - 2021 IEEE International

Conference on Software Analysis, Evolution and Reengineering,

SANER 2021, Institute of Electrical and Electronics Engineers Inc.,

Mar. 2021, pp. 600–604. doi: 10.1109/SANER50967.2021.00073.

[15] D. Ramos-Vidal, “Reengineering legacy document information

systems: Challenges and solutions,” in ACM International Conference

Proceeding Series, Association for Computing Machinery, Jun. 2023,

pp. 286–291. doi: 10.1145/3593434.3593436.

[16] N. Jomhari, N. A. A. Alias, A. A. A. Ellah, A. A. Magableh, and E. M.

Ghazali, “A Multi-Criteria Decision-Making for Legacy System

Modernization With FUCOM-WSM Approach,” IEEE Access, vol. 12,

pp. 48608–48619, 2024, doi: 10.1109/access.2024.3383917.

[17] W. Said, J. Quante, and R. Koschke, “Do Extracted State Machine

Models Help to Understand Embedded Software?,” in 2019

IEEE/ACM 27th International Conference on Program

Comprehension (ICPC), 2019, pp. 191–196.

doi:10.1109/ICPC.2019.00038.

[18] G. Canfora, M. di Penta, and L. Cerulo, “Achievements and challenges

in software reverse engineering,” Communications of the ACM, vol.

54, no. 4. pp. 142–151, Apr. 2011. doi: 10.1145/1924421.1924451.

[19] N. Chondamrongkul, J. Sun, and I. Warren, “Software Architectural

Migration: An Automated Planning Approach,” ACM Trans. Softw.

Eng. Methodol., vol. 30, no. 4, Jul. 2021, doi: 10.1145/3461011.

[20] A. Ahmad, A. Alkhalil, A. B. Altamimi, K. Sultan, and W. Khan,

“Modernizing Legacy Software as Context—Sensitive and Portable

Mobile-Enabled Application,” IT Professional, vol. 23, no. 1, pp. 42–

50, 2021, doi: 10.1109/MITP.2020.2975997.

[21] D. A. I. Kreedy, “Estimation of Risk in Software Re-engineering

Projects,” International Journal of Scientific and Research

Publications (IJSRP), vol. 10, no. 06, pp. 799–802, Jun. 2020,

doi:10.29322/ijsrp.10.06.2020.p10293.

[22] I. Jovanovikj, E. Yigitbas, A. Nagaraj, A. Anjorin, S. Sauer, and G.

Engels, “Validating Test Case Migration via Mutation Analysis,”

Proceedings of the IEEE/ACM 1st International Conference on

Automation of Software Test, pp. 31–40, Oct. 2020,

doi:10.1145/3387903.3389319.

[23] X. Yang, L. Chen, X. Wang, and J. Cristoforo, “A Dual-Spiral

Reengineering Model for Legacy System,” TENCON 2005 - 2005

IEEE Region 10 Conference, 2005, pp. 1–5.

doi:10.1109/tencon.2005.301068.

[24] N. Team “Reverse Engineering,” in Handbook for CTFers, Singapore:

Springer Nature Singapore, 2022, pp. 295–427. doi: 10.1007/978-981-

19-0336-6_5.

[25] D. Bouchiha, “Reengineering Legacy Systems Towards New

Technologies,” Encyclopedia of Information Science and Technology,

Fifth Edition, IGI Global, 2020, pp. 1214–1230. doi: 10.4018/978-1-

7998-3479-3.ch084.

[26] H. Hadawale, "Revamp Your Existing Software to Save Infrastructure

Cost," LinkedIn, [Online]. Available:

https://www.linkedin.com/pulse/revamp-your-existing-software-

save-infrastructure-cost-hadawale/. [Accessed: Aug. 24, 2024].

[27] L. de Giovanni et al., “Revamping Cloud Gaming With Distributed

Engines,” IEEE Internet Computing, vol. 26, no. 6, pp. 88–95, 2022,

doi: 10.1109/MIC.2022.3172105.

[28] B. G. Varghese R, K. Raimond, and J. Lovesum, “A novel approach for

automatic remodularization of software systems using extended ant

colony optimization algorithm,” Information and Software Technology,

vol. 114, pp. 107–120, 2019, doi:10.1016/j.infsof.2019.06.002.

[29] H. Andrade, C. Berger, I. Crnkovic, and J. Bosch, “Principles for Re-

architecting Software for Heterogeneous Platforms,” 2020 27th Asia-

Pacific Software Engineering Conference (APSEC), 2020, pp. 405–

414. doi: 10.1109/apsec51365.2020.00049.

[30] Luvina Software. Software Re-Engineering: A Lifesaver for Legacy

Systems. https://luvina.net/en/software-re-engineering [accessed Aug.

23, 2024].

[31] A. S. Abbas, W. Jeberson, D. W. Jeberson, and V. V Klinsega,

“Proposed Software Re-engineering Process That Combine Traditinal

Software Reengineering Process With Spiral Model Proposed

Software Re-engineering Process That Combine Traditinal Software

Re-engineering Process With Spiral Model,” International Journal of

Advanced Research in Computer Science, vol. 4, no. 2, 2013.

[32] A. Kumar, “Software Re-engineering Process Model,” International

Journal of Science and Research, pp. 2319–7064, 2019,

doi:10.21275/SR21101152601.

[33] C. J. Fernández Candel, J. García Molina, F. J. Bermúdez Ruiz, J. R.

Hoyos Barceló, D. Sevilla Ruiz, and B. J. Cuesta Viera, “Developing

a model-driven reengineering approach for migrating PL/SQL triggers

to Java: A practical experience,” Journal of Systems and Software, vol.

151, pp. 38–64, May 2019, doi: 10.1016/j.jss.2019.01.068.

[34] A. Thums and J. Quante, “Reengineering embedded automotive

software,” 2012 28th IEEE International Conference on Software

Maintenance (ICSM), 2012, pp. 493–502.

doi:10.1109/ICSM.2012.6405312.

[35] S. Tarar, “Design Paradigm and Risk Assessment of Hybrid Re-

engineering with an approach for development of Re-engineering

55

Metrics,” International Journal of Software Engineering &

Applications, vol. 3, no. 1, pp. 27–36, Jan. 2012,

doi:10.5121/ijsea.2012.3103.

[36] M. Madiah, K. X. Ng, Y. W. Tan, Z. H. Tan, Z. T. Chong, and J. X.

Chan, “Wix for Web Development and the Application of the

Waterfall Model and Project Based Learning for Project Completion:

A Case Study,” Journal of Informatics and Web Engineering, vol. 3,

no. 2, pp. 212–228, Jun. 2024, doi: 10.33093/jiwe.2024.3.2.16.

[37] Y. H. Tay, S. Y. Ooi, Y. H. Pang, Y. H. Gan, and S. L. Lew, “Ensuring

Privacy and Security on Banking Websites in Malaysia: A Cookies

Scanner Solution,” Journal of Informatics and Web Engineering, vol.

2, no. 2, pp. 153–167, Sep. 2023, doi: 10.33093/jiwe.2023.2.2.12.

[38] P. Dhiman, “Unified V- Model Approach of Re-Engineering to

reinforce Web Application Development,” IOSR Journal of Computer

Engineering, vol. 15, no. 6, pp. 09-17, 2013, doi:10.9790/0661-

1560917.

[39] A. Colbrook, C. Smythe, and A. Darlison, “Data abstraction in a

software re-engineering reference model,” Proceedings. Conference

on Software Maintenance 1990, 1990, pp. 2–11.

doi:10.1109/ICSM.1990.131314.

[40] A. Bianchi, D. Caivano, V. Marengo, and G. Visaggio, “Iterative

reengineering of legacy systems,” IEEE Transactions on Software

Engineering, Mar. 2003, pp. 225–241.

doi:10.1109/TSE.2003.1183932.

[41] P. Pamami, A. Jain, and N. Sharma, “Cloud Migration Metamodel : A

framework for legacy to cloud migration,” 2019 9th International

Conference on Cloud Computing, Data Science & Engineering

(Confluence), 2019, pp. 43–50. doi:10.1109/confluence.2019.8776983.

[42] H. Abu Bakar, R. Razali, and D. Jambari, “Legacy Systems

Modernisation for Citizen-Centric Digital Government: A Conceptual

Model,” Sustainability, vol. 13, p. 13112, Nov. 2021,

doi:10.3390/su132313112.

[43] A. Rolo, R. Alves, M. Saraiva, and G. Leandro, “The SERVQUAL

instrument to measure service quality in higher education – A case

study,” SHS Web of Conferences, vol. 160. EDP Sciences, Les Ulis,

2023. doi:10.1051/shsconf/202316001011.

[44] D. Kumar. “Software Engineering | SDLC V-Model -

GeeksforGeeks.”GeeksforGeeks.

https://www.geeksforgeeks.org/software-engineering-sdlc-v-model/

[accessed Aug. 22, 2024].

[45] S. Mauluddin and R. Sidik, “Reverse Engineering in Student Mark

Recapitulation Application,” IOP Conference Series: Materials

Science and Engineering, Institute of Physics Publishing, Nov. 2019.

doi: 10.1088/1757-899X/662/2/022097.

[46] G. Zhang, L. Shen, X. Peng, Z. Xing, and W. Zhao, “Incremental and

iterative reengineering towards Software Product Line: An industrial

case study,” 2011 27th IEEE International Conference on Software

Maintenance (ICSM), 2011, pp. 418–427.

doi:10.1109/ICSM.2011.6080809.

[47] V. Durelli, R. Penteado, S. Borges, and M. Viana, “An Iterative

Reengineering Process Applying Test-Driven Development and

Reverse Engineering Patterns,” INFOCOMP, vol. Special Edition, pp.

1–8, Jan. 2010.

[48] E. J. Byrne and D. A. Gustafson, “A software re-engineering process

model,” [1992] Proceedings. The Sixteenth Annual International

Computer Software and Applications Conference, 1992, pp. 25–30.

doi: 10.1109/CMPSAC.1992.217608.

[49] J. Singh, K. S. Dhindsa, and J. Singh, “Performing Reengineering

using Scrum Agile Framework,” in 2020 Indo – Taiwan 2nd

International Conference on Computing, Analytics and Networks

(Indo-Taiwan ICAN), 2020, pp. 33–35. doi:10.1109/Indo-

TaiwanICAN48429.2020.9181328.

[50] M. Fahmideh, J. Grundy, G. Beydoun, D. Zowghi, W. Susilo, and D.

Mougouei, “A model-driven approach to reengineering processes in

cloud computing,” Information and Software Technology, vol. 144, p.

106795, 2022, doi: 10.1016/j.infsof.2021.106795.

[51] J. Singh, K. Singh, and J. Singh, “Reengineering framework for open

source software using decision tree approach,” International Journal

of Electrical and Computer Engineering, vol. 9, no. 3, pp. 2041–2048,

Jun. 2019, doi:10.11591/ijece.v9i3.pp2041-2048.

56

