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Abstract—The increasing number of road accidents is still a global concern.  Traditional approaches to detecting traffic violators on 

the road, such as radar guns and sensors, are expensive and time-consuming to maintain and install. This often results in inefficient 

and ineffective detection of traffic violators. This paper proposes a more cost-effective and efficient approach to traffic violation 

detection utilizing visual data from CCTV footage. Specifically, the method targets two common violations: crossing red lights and 

overtaking on double lines. In this study, YOLO is integrated for road object detection, providing the detection of vehicles and traffic 

lights on the road for our system. Then, the Deep SORT tracker tracks detected vehicles, ensuring continuous monitoring over time. 

An automated lane detection technique is formulated to identify the stopping line/lane for red light violation detection, enabling 

precise detection of vehicles that cross the stop lane during red light. For overtaking detection, the system detects the double line to 

serve as the boundary that vehicles should not cross, identifying illegal overtaking. Furthermore, point-line distance calculation is 

utilized to detect traffic violators by analyzing their tracked trajectories and positions. The proposed solution is evaluated using real-

world CCTV footage from online repositories to reflect the real-world scenarios as closely as possible. Experimental results show that 

the proposed techniques achieve promising detection of real-time traffic violators, which leads to a safer environment for road users. 
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I. INTRODUCTION

The traffic surveillance system is crucial for traffic 

authorities to ensure public safety and maintain an efficient 

transportation network. It is being utilized worldwide to 

manage traffic flow, improve road safety, and detect traffic 

violators. Unfortunately, road accidents remain one of the 
top 5 causes of death in Malaysia, occupying 3.2% of the 

principal causes of death according to the statistics published 

by the Department of Statistics Malaysia (DOSM) [1]Most 

accidents are undoubtedly caused by reckless human driving 

behaviors, such as running a red light and illegal overtaking.  

The high frequency of accidents from humans’ reckless 

driving has caused many people, including innocents, to lose 

one’s life and be injured. Most accidents are caused by these 

reckless drivers who break the traffic rules, bringing the 

safety of road users in danger [2]. This issue should be 

addressed and given due attention. Implementing an AI-
based traffic surveillance system offers a potential solution 

to detect these violators and ensure they face appropriate 

consequences. With the high frequency and increasing 

volume of accidents over the years, it has become 

increasingly difficult for traffic authorities to manage and 

control the traffic effectively [3]. Consequently, road users 

face various challenges, such as congestion and safety issues. 

Integrating AI technology into traffic surveillance systems 

has become essential for traffic authorities to manage traffic 

flow more efficiently. 

Currently, most traffic violation detection systems still 

use the traditional approach with radar guns and sensors, 

which can be costly to maintain and install. Moreover, these 
sensors often demand more frequent maintenance than 

CCTV systems. Sometimes, even manual police patrols are 

required to catch traffic offenders, a method that can be both 

costly and inefficient. Therefore, an adaptable system for 

integration into CCTV infrastructure can significantly reduce 

the overall cost and labor usage.  

This paper proposes a visual-based system that can be 

integrated into a CCTV system to control traffic flow and 

detect traffic violators. The proposed system is designed to 

detect traffic violators, including illegal overtaking and red 

light running, which can help lessen reckless drivers and 
reduce the road accident rate. Therefore, implementing the 
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system could help smooth the traffic flow as drivers are 

more likely to adhere to traffic regulations, leading to fewer 

disruptions and delays on the road network.  

The system is designed to process real-time video footage 

received from CCTV cameras installed at selected locations. 

Given its integration with CCTV technology, the system's 

coverage extends to any area where the proposed model is 

deployed. With its versatility, the system can effectively 

detect traffic violations across diverse settings, including 

highways, roads, and intersections. The system combines 
different algorithms that are responsible for different tasks. 

YOLO is used to detect road objects, including vehicles and 

traffic lights. Nonetheless, lane detection is designed to be 

automated using various image processing techniques, such 

as Canny edge detection and Hough transform, to outline the 

actual lane in the video frames. Point-line distance is then 

calculated according to the vehicles and the identified line 

for traffic violation detection.  

Research on traffic surveillance systems has been gaining 

more attention in recent years. Due to the rapid advancement 

of AI technology, there has been an increasing interest in 
using machine learning and deep learning techniques to 

monitor and manage traffic flow on roads, highways, and 

intersections. Therefore, this paper presents a comprehensive 

review of the existing research literature in the field of traffic 

surveillance systems. The literature review mainly focuses 

on reviewing the conventional and deep learning methods 

proposed by researchers for traffic surveillance detection in 

recent years. There have been various methods utilized by 

researchers in the field of traffic surveillance, such as 

calculating the deceleration rate of vehicles when they come 

close to the traffic stop lane using a Support Vector Machine 
(SVM) and Random Forest (RF) [4], [5], Vehicular ad hoc 

Network (VANET) [6]. Particle Swarm Optimization (PSO) 

[7], Convolutional Neural Network (CNN) [8], [9] and other 

algorithms for detecting red light running and other common 

traffic violations on the road, with their corresponding 

advantages and drawbacks. 

A. Conventional Methods 

In the study by Katanyoo et al. [10], the authors used 

MSD to identify red-light runners and lane-altering 
violations before traffic lights. HSV color space is used 

instead of RGB, which is more perfectly suited for computer 

vision. In addition, HSV color space is also used to track 

vehicles, which works by deducting the background frame’s 

average hue value from the current frame’s average hue 

value. The difference in hue value is then used to identify the 

possible presence of vehicles. This has reduced the 

frequency of mistakenly detecting shadows as vehicles. 

Vehicle trajectories are computed using MSD. The lower 

difference in MSD value indicates a higher likelihood that 

the vehicle in different frames is similar. Lane-altering 
violations are detected by analyzing the direction changes in 

vehicle trajectories. On the other hand, when a vehicle 

crosses the red light’s reference line, it will be recognized as 

a red-light runner. The findings show that traffic light signal 

detection was 100% accurate. However, the proposed system 

performs poorly on lane-altering detection, with only 28 

violations successfully detected. Vehicle violation detection 

got an average accuracy of 79%, whereas small, medium, 

and large vehicles have an accuracy of 78%, 85%, and 74%, 

respectively. 

Nonetheless, Mochamad et al. [11] researched to detect 

traffic light runners at road intersections using BLOB and 

MST methods. The road intersections are given reference 

lines for markers in the CCTV to detect traffic offenses. 

Thus, vehicles will be marked as running the red lights if 

they cross the line when the traffic lights are red. The dataset 

was pre-processed with a few stages from thresholding, 

contour, and convex hull to Binary Large Object (BLOB). 
The MST algorithm was then applied in vehicle tracking to 

detect traffic violations. The authors utilized the MST 

algorithm to track and predict the position of vehicles over 

time by examining the changes in their position in 

consecutive frames. The pro of the proposed system is that 

cars are more likely to be classified correctly because they 

are only classified and tracked after passing the reference 

line. This ensures that all the vehicles have similar physical 

dimensions captured from the same perspective and 

orientation. In contrast, the performance of the proposed 

system could be more stable due to the inability to deal 
perfectly with a dynamic environment. For instance, 

congestion would affect the mean shifting performance, and 

the system has the risk of wrongly identifying the lights 

reflected on the road as a car. The results correctly classify 

cars and motorcycles are 71% and 79%, respectively. 

However, only 58% accuracy in detecting traffic light 

runners was achieved in this research using the BLOB and 

MST algorithms. 

There exists a recent work by Akhilalakshmi et al. [12] 

proposing a traffic violation detection system capable of 

detecting vehicles swerving and vehicles blocking pedestrian 
lanes. Haar Training tool, a software tool used to train 

classifiers for object detection in OpenCV, was utilized in 

vehicle detection. Genetic Algorithm (GA) was used to 

determine whether a vehicle violated traffic rules. The 

algorithm consists of multiple steps, starting with initializing 

the population by generating values for a and b, referred to 

as the chromosomes. Best chromosomes are chosen for the 

fitness function, and chromosomes that produce low fitness 

values are eliminated. The trimmest fit members of the 

population are then replaced with new chromosomes whose 

gene values are changed. This process continues until the 

algorithm finds the optimal solution. Tesseract software is 
used to detect and capture the license plate number of 

vehicles that were found to have violated the traffic rules. In 

this paper, the authors found that the proposed algorithm is 

more efficient in finding an optimal solution than the 

standard algorithms, as it uses an ample search space. 

However, computational resources are expensive and time-

consuming using an ample search space. The result shows 

that the fitness value increases over generations, which 

indicates that the algorithm is heading towards more optimal 

solutions over generations. Overall, the proposed system by 

the authors shows promising results for detecting traffic 
violations and has the potential to be further improved 

through future research. 

B. Deep Learning Methods 

With the increasing popularity and adoption of deep 

learning techniques, the study by Joel et al. [13] shows an 
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overall accuracy of 100% in traffic light runner detection 

and 92.1% in speeding detection. The authors utilized SSD, 

which uses CNN as its base architecture in object detection. 

The authors performed feature extraction on the dataset 

beforehand to improve system performance. Three feature 

extractors, including MobileNet, Inception V2, and ResNet 

50, are used with SSD and compared with each other in the 

feature extraction phase. The NMS process has been done to 

remove duplicate bounding boxes on each vehicle. A stop 

line has been set up to detect if a vehicle runs a red light 
when the traffic light is indicating red. Euclidean Distance 

has been used in the system to estimate the vehicle’s speed. 

The Euclidean Distance equation is computed to measure 

the displacement of vehicles in pixels. Then, a unit 

conversion mathematical equation is applied to convert the 

speed to the unit of km/h. Out of the three available feature 

extractors, MobileNet was chosen in the proposed system 

due to its high accuracy of 98.90% and processing speed of 

0.08 seconds per frame, which is the fastest among the three. 

Overall, the proposed system can detect all traffic light 

runners accurately. However, the proposed system requires 
manual traffic light timer insertion to determine the current 

traffic light’s state, which is inefficient regarding real-time 

traffic monitoring. 

In the same year, Srinivas et al. [14] developed a traffic 

violation detection system using the Region-based 

Convolutional Neural Network (R-CNN) method to identify 

vehicles running red lights. The proposed system could 

identify plate numbers and estimate the speed of any vehicle 

that violates the traffic rules, enabling relevant authorities to 

take any required action. Support Vector Machine (SVM) 

and CNN have been used to extract objects and features 
from images in object detection. Predefined lines are drawn 

on the screen to determine whether a vehicle has crossed the 

line when the traffic lights turn red, which results in 

violating the traffic rules. Optical Character Recognition 

(OCR) recognizes the vehicle's number plate.  The 

experiments show the system's capability to detect red light 

runners and capture the violating vehicles. It takes 6.55 

seconds to execute the whole process. The proposed system 

allows real-time traffic monitoring, which provides efficient 

traffic monitoring management and reduces the workload of 

traffic authorities. However, the system requires manual 

insertion of a traffic stop line, and it is highly dependent on 

the video quality for accurate license plate recognition. 

Besides the mentioned works, Ilker et al. [15] propose a 

contextual anomaly detection method to detect various 

traffic anomalies, including point and contextual anomalies. 

The surveillance system was implemented with a Contextual 
Anomaly Detection Network (CADNet) on an Unmanned 

Aerial Vehicle (UAV). Instead of letting the machine learn 

about the anomalies, standard environmental patterns were 

fed into the machine. Besides the differences in training 

using standard traffic patterns, the proposed method uses 

UAV instead of CCTV, which is much more costly. 

“CADNet consists of an encoder, decoder, and a context 

subnetwork” [15]. The encoder is responsible for processing 

incoming data, and the context subnetwork gathers more 

contextual attributes from the environment and produces 

different encoded representations to capture essential 
information from the input. The decoder then creates a 

reconstructed sample from concatenated encoded 

representations. The method uses reconstruction error to 

detect anomalies through a reconstruction-based approach. 

As the reconstruction error increases, the likelihood of 

anomaly increases. Synthetic-generated anomalies were 

inserted into the dataset to evaluate the effectiveness of 

CADNet in point anomaly detection. The authors reported 

that their proposed method has higher accuracy than others. 

The accuracy of detecting point anomalies was 91.2%, and 

the accuracy of detecting contextual anomalies was 86.6%. 
The proposed model can detect various traffic anomalies, 

from point anomalies to contextual anomalies, which are 

challenging with relatively high accuracy. Still, unlike other 

existing models, the proposed model uses UAV, which uses 

CCTV and thus result in higher overall costs, including 

maintenance, equipment, and deployment cost. A summary 

of state-of-the-art methods is provided in Table 1.  

TABLE I 

A SUMMARY OF STATE-OF-THE-ART METHODS 

Author Method Result Pros Cons 

Katanyoo et 
al. [10] 

MSD Traffic light detection: 
100% 
Violation detection: 79% 

Uses HSV in vehicle detection 
which reduces frequency of 
mistakenly detect shadow as vehicle 

Not well-performed in lane altering 
violation 

Mochamad et 
al. [11] 

MST Accuracy: 58% Vehicle more likely to be classified 
correctly due to consistent position 

and angle 

Hard to detect vehicles during traffic jam, 
morning lights on road can be mistakenly 

recognised as vehicle 
Akhilalakshmi 
et al. [12] 

GA 0.056 fitness value from 
45 to 100 generation 

Provide optimal solution Large search space means more 
computational cost, and time-consuming 

Joel et al. [13] SSD Red light violation 
detection: 100% 
Speeding detection: 
92.1% 

Able to detect all traffic light runner 
accurately 

Manual insertion of traffic light timer 
which is inefficient in real-time traffic 
monitoring 

Srinivas et al. 
[14] 

R-CNN Processing time: 6.55s Proposed system allows real-time 
traffic monitoring 

Requires manual insertion of traffic stop 
line, and highly dependent on the video 

quality for accurate license plate 
recognition 

Ilker et al. [15] CADNet point anomaly: 91.2% 
Contextual anomaly: 
86.6% 

Ability to detect various traffic 
anomalies 

Model uses UAV, overall cost of UAV is 
expensive 
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When comparing the disparities between the proposed 

and existing systems, the proposed system enhances the 

existing works due to its lane detection and traffic light state 

automation without manual intervention. Furthermore, the 

proposed system reduces overall costs and improves 

efficiency by integrating CCTV instead of a UAV system. 

II. MATERIALS AND METHOD 

The proposed system can detect two traffic violation 

scenarios: red light running and illegal overtaking. When a 

vehicle crosses the detected stop line when the traffic light is 

red, it will be immediately identified as a red-light runner. 

On the other hand, vehicles that overtake another vehicle 

illegally will be determined as illegal overtaking. This can be 

determined when a vehicle overtakes in the occurrence of a 

double line where overtaking is not allowed. Fig. 1 shows an 

overview of the proposed system. In general, when the 

proposed system receives an input video, road objects, 

including vehicles and traffic lights in each frame of the 

video, are detected using YOLO [16]. Each detected vehicle 

will be given with its unique identifier and tracked using 

Deep SORT [17] technique. Next, the traffic stop lane and 
overtaking double line are identified using Canny Edge 

Detection [18] and Hough Transform [19] techniques.  

 

 

Fig. 1  Flowchart of the proposed traffic violation detection system 

 

The traffic stop lane indicates the line that is not allowed 

to be crossed when the traffic light is in a red state, and the 

overtaking double line indicates the area not allowed to be 

crossed by vehicles. In converse to the detected vehicles, 

detected traffic lights in each frame will be processed for 

current traffic light state identification to determine whether 

the current state is red. After these procedures, the proposed 
system detects any traffic violations occurring, including 

traffic light violations and illegal overtaking violations. 

There are two conditions to determine whether a vehicle has 

violated the traffic light rule: the current traffic light state is 

red, and the vehicle crosses the identified lane. If both 

conditions are fulfilled, that vehicle will be detected as a 

traffic violator and thus send an alert message to the traffic 

authorities. On the other hand, when a vehicle crosses the 

identified overtaking double line, that vehicle will be 

classified as a traffic violator and send an alert message to 

the traffic authorities.  

A. Object Detection 

YOLO is a popular and widely used algorithm in real-

time object detection. It is given the name You Only Look 

Once because of its ability to process images quickly 

and detect real-time objects with high accuracy. The 

algorithm applies CNN [20] that divides the image into 

small pieces and predicts the class probabilities by 

processing those individual pieces. When an object is 

detected, it will be assigned a bounding box with its 

predicted class and the likelihood of it belonging to that class. 

These objects are classified by training the model with 

a training set annotated with their corresponding predefined 

classes. The trained model will then predict the occurrence 
of objects on an image based on the confidence score 

according to the predefined classes. The detected object will 

be assigned a bounding box with the highest confidence 

score object class. When an image or video is fed into 

YOLO, it divides the image into equally small grids. Each of 

these small grids is responsible for predicting objects within 

its boundaries. Each grid cell has its respective vector, as 

shown in Equation 1. 

 
(1) 

Pc represents the probability of the presence of an object 

within the grid cell. Bx and By represent the bounding box's 
location (center coordinates). At the same time, Bw and Bh 

represent the object's size with its respective width and 

height. Finally, C1 and C2 represent the probability of the 

object belonging to a particular class. The number of C is 

dependent on the total number of predefined classes. Non-
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Maxima Suppression (NMS) [21] is applied in post-

processing to overcome the common problem of redundant 

and overlap bounding boxes in object detection. This will 

allow YOLO to remove high overlapping bounding boxes 

and keep the bounding box with the highest object score. 

Object detection is the first yet important part of 

accurately detecting the objects on the road in the proposed 

system. As YOLO has a good performance, high speed, and 

high accuracy in real-time object detection tasks and its 

capability of detecting multiple objects within a single image, 
it is utilized in this paper to detect road objects, including 

vehicles and traffic lights. It is crucial to accurately detect 

the objects on the road as accurate object detection highly 

improves the performance and accuracy of red-light 

violation detection. Therefore, three different variations of 

YOLO algorithms, including YOLOv7 [22] model, 

YOLOv8n [23] model, and YOLOv8x [24] The model has 

been evaluated using the collected testing set to find the 

optimal solution for road object detection. 

Input frames are being processed for object detection 

within frames using YOLO. Frames are converted to 
PyTorch tensor to normalize the pixel values to the range of 

[0,1]. Inference is made using a forward pass through the 

YOLO algorithm to produce predictions. In the post-process, 

NMS filters out redundant bounding boxes with low 

confidence scores. It then annotates the original frames with 

bounding boxes, labels, and other prediction information. 

The bounding boxes of the detected vehicles are extracted 

within the frames, and their corresponding confidence scores 

and labels are passed for tracking. It associates the detections 

with existing tracks and predicts new tracking for 

unassociated detections [25]. 

B. Vehicle Tracking 

Deep SORT is a multiple-object tracker algorithm capable 

of tracking multiple objects in a single frame. When 

comparing to the SORT algorithm, it is more efficient, 

reliable, and accurate as it is designed as an extension of the 

SORT algorithm to address the limitations of SORT. One of 

the advantages of Deep SORT algorithm is its capability at 

handling occlusions using deep learning-based appearance 

features. In addition, it is more robust in tracking objects that 
changes their appearance which may be due to the 

occurrence of rotation or scaling. 

In Deep SORT, two main algorithms, including 

the Kalman Filter [26] and Hungarian Algorithm [27] are 

utilized for object tracking. Kalman Filter is integrated into 

Deep SORT to estimate the state of the detected objects in 

subsequent frames. Thus, it helps predict the detected 

objects' future position based on their current state and 

motion, which is essential in object tracking. On the other 

hand, the Hungarian Algorithm is incorporated in Deep 

SORT to find the best match between the predicted positions 
by the Kalman Filter and the newly detected objects across 

frames using the cost matrix. The Hungarian Algorithm aims 

to determine whether a predicted position belongs to a 

specific detected object. 

Therefore, Deep SORT, with its reliable and efficient 

ability to track multiple objects, is utilized in this paper to 

track multiple vehicles on the road in real-time. This allows 

the proposed model to keep track of the trajectories and 

motion of each vehicle, thus further processing for red light 

violation detection. Fig. 2 shows the architecture of Deep 

SORT receiving the input of detected objects using YOLOv8 

and internally processing the detected objects for real-time 

object tracking. 

 

 
Fig. 2  Deep SORT Architecture [28] 

C. Lane Detection 

Canny Edge Detection is a well-known multi-state edge 

detection algorithm. In canny edge detection, the gaussian 

filter is first applied to the image to smoothen it by blurring 

it thus resulting in noise reduction. Then, the blurred image 

is passed for filtering with horizontal Sobel kernel and 

vertical Sobel kernel to get the first derivative in the 
horizontal direction Gx and the vertical direction Gy. By 

using the Gx,Gy, gradient magnitude of each pixel indicating 

the intensity of the edges as shown in Equation 2 and the 

gradient direction of each pixel indicating the orientation of 

the edges as shown in Equation 3 can be computed. Equation 

4 and Equation 5 show the horizontal and vertical Sobel 

kernel [29]. 

� �  ���2 �  ��2 (2) 

  

	 � 
��
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1 2 1
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�2 0 2
�1 0 1
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After gradient calculation, the recognized edges may 

appear to have different thicknesses. Therefore, Non-
Maxima Suppression (NMS) is performed to thin the thick 

edges. It works by suppressing all the gradient values to zero 

except for the remaining local maxima, representing the 

presence of an edge in that pixel. The double threshold is 

applied after NMS to determine potential edges. In double 

thresholding, a high and low threshold is set to determine the 

strong and weak pixels. Gradients greater than the high 

threshold are known as the firm edges that will contribute to 

the final edge. In contrast, gradients between the high and 

low thresholds may or may not be included in the final edge, 

depending on their connectivity. Lastly, edge tracking by 

hysteresis is performed to turn the weak edges into firm 
edges if they are connected. Otherwise, they are suppressed. 
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Fig. 3 shows an example image of the output edges detected 

after applying canny edge detection. 

 

 
Fig. 3  A sample of Canny Edge Detection result 

 

Hough Transform is a feature extraction technique to 

detect lines, circles, or other shapes and curves. Its goal is to 

find imperfect (broken or distorted) instances of objects 

within similar shapes by voting. After an image edge has 

been detected using a technique like canny edge detection, it 

represents the line using Equation 6. r represents the rho 

which is the shortest distance from the line to the origin (0,0) 

in the image. θ represents the theta which is the angle 

between x-axis and the line drawn from the origin to this 
closest point whereas x, y are the coordinates of the points on 

the line. Then, voting is performed to all possible lines that 

could pass through the edge point in the image represented 

by a pair of r,θ values. Lastly, the cells with the most votes 

will be chosen for drawing a complete line [30]. Fig. 4 

shows the result of Hough Transform after performing 

Canny Edge Detection. 

� � � ��� 	 � � ��� 	 (6) 

 
Fig. 4  Hough Transform 

 

In red light violation and overtaking violation detection, it 

is crucial to accurately determine the lane on the road. 

Therefore, Canny Edge Detection and Hough Transform 

have been applied in lane detection to detect the traffic stop 
line to identify red-light violators and the double line to 

identify illegal overtaking violators on the road. 

D. Traffic Light State Detection 

YOLO is trained by feeding the model many traffic light 

images, which are used to detect traffic lights in each video 

frame. When the recognized object is a traffic light, it will 

pass the bounding box as a parameter to identify the current 

traffic light states. Traffic lights with their determined states 

will be shown in the video after the proposed system 

recognizes the current color state. Since the only important 

characteristic in our scenario is to determine when the traffic 

light is in the red state for red light violator detection, the 

proposed system is designed to only categorize whether the 

current traffic light state is red or not red. The proposed 

system will show “Stop” on the traffic light when the 

current traffic light state is red, whereas the system will 

show “Go” in the video indicating that the current traffic 

light state is either yellow or green, but not red. This allows 

simplicity in indicating the traffic light state instead of 
indicating different traffic color state (red, yellow, green). 

As shown in Fig. 5, the dimension of the bounding box is 

first segmented into three regions representing each region 

where a different color state (red, yellow, green) is expected 

to appear. Each segmented region is converted to HSV color 

space to determine its color coding. With the predetermined 

red mask, the red pixels are counted in the first segmented 

region and if there is an existence of red pixel, the traffic light 

state will be determined as red otherwise not red. By 

segmenting the traffic light into three equal regions, it reduced 

the error of traffic light state identification as some of the 

border of the traffic lights is painted with yellow color which 
could mislead the proposed system in detecting the correct 

traffic light state. Algorithm 1 shows the process of the 

proposed system in identifying the current traffic light state. 
 

 
Fig. 5  Traffic Light State Diagram 

 

Algorithm 1 Pseudocode Procedure for Traffic Light State 

Detection 
1. imgheight, imgwidth, _ = img.shape 
2. height = imgheight / 3 
3. convert each square to HSV colour 

space 
4. count red pixels in first segmented 

square 
5. if red > 0 then 

          return “stop” 
6. else 

          return “go” 
7. end if 
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E. Red Light Violation Detection 

Red light violations are a significant traffic safety concern 

that should be addressed to reduce the accident rate on the 

road [31]. This can be achieved by detecting the position and 
movement of vehicles in relation to the traffic signals. 

Therefore, the proposed system identifies red light violators 

by tracking the vehicles’ movement and determining 

whether a vehicle has crossed the traffic stop line when the 

traffic signal is in the red state. 

In real-time, there may be more than one traffic light from 

different pathways captured by the CCTV camera. This may 

yield to the system recognizing traffic lights from other 

pathways thus affecting the traffic light violation detection 

accuracy. To address this issue, a constraint is set to process 

only the detected traffic light with the highest confidence 
score for traffic light state identification.  

Each of the detected vehicles is tracked using Deep SORT. 

Each vehicle has their center point calculated on the bottom 

edge of their corresponding bounding boxes representing the 

vehicle’s position for movement and trajectory tracking. If 

the traffic light is in “Stop” state (red light), it further checks 

whether the vehicle’s center point has crossed the defined 

stop line detected earlier at intersection. Any vehicle that is 

found to cross the defined stop line when the traffic light 

state is red will be identified as red-light violator with a red 

bounding box on that particular vehicle displayed in the 

video.  
Point-line distance is used with its formula as shown in 

Equation 7 to determine whether a vehicle has crossed the 

stop line when the traffic light is red. x0, y0 represents the 

center point of the vehicle, while x1, y1, x2, y2 represents the 

coordinates of the intersection stop line. In red light violation 

detection, a distance threshold of 1 is set. A vehicle with its 

computed point-line distance less than 1 will be identified as 

crossing the stop line. The traffic violation detection process 

is shown in Algorithm 2. 

� � ���2 � �1��0 � ��2 � �1��0 � �2�1 � �2�1�
���2 � �1�2 � ��2 � �1�2

 (7) 

Algorithm 2 Pseudocode Procedure for Traffic Violation 

Detection 
1. function 

point_line_distance(point,line) 
2.     x0, y0 = point 
3.     x1, y1 = line[0] 
4.     x2, y2 = line[1] 
5.     numerator = |(y2 – y1)x0 – (x2 – 

x1)y0 + x2 x y1 – y2 x x1|  
6.     denominator = sqrt[(y2 – y1)2 + (x2 

– x1)2] 
7.     distance = numerator / denominator 

        return distance 
8. end function 

 
9. function 

violation(center,line,threshold=1) 
10.     distance = 

point_line_distance(center,line) 
11.     if distance < threshold then 

        return True 
12.     else 

        return False 
13.     end if 
14. end function 
15.  
16. for Each frame in video do 
17.     for each detected vehicle in frame 

do 
18.         center = (centerx, centery) 
19.         line = [(startx, starty), 

(endx, endy)] 
20.         result = 

violation(center,line) 
21.         if True then 
22.             Mark vehicle with red 

bounding box AND display “red light 
violation” text 

23.         end if 
24.     end for 
25. end for 

F. Overtaking Violation Detection 

Any illegal overtaking violation is known as a vehicle 

overtake under the existence of double line. Therefore, 

overtaking is identified by determining whether a vehicle has 

crossed the detected double line where overtaking is not 

allowed. The center point of vehicles is first determined by 

calculating their corresponding bounding boxes bottom edge 

center point. The center point is then utilized to determine 

whether it has intersected the detected double line. Fig. 6 
illustrates the detection of overtaking violation by the 

proposed system. When a vehicle is detected using YOLO, 

the assigned bounding box with its corresponding 

coordinates x1, x2, y1, y2 will be used for the calculation of 

the center point on the bottom edge of the bounding box 

using Equation 8. If the center point crossed the detected 

lane, that particular vehicle will be immediately recognized 

as traffic violator thus generating an alert message of 

overtaking detected on that vehicle with a red bounding box. 

The designed logic uses a point-line distance formula as 

stated in Equation 7 to check whether the vehicle has crossed 

the double line. The distance threshold in overtaking 
detection is set as 0.5. By using the point-line distance 

calculation as shown in Equation 7, the proposed system is 

able to identify whether a vehicle has crossed the line 

causing overtaking to appear. The distance threshold of 0.5 

units is used due to the overtaking events typically involving 

closer proximity to the double line. With a smaller distance 

threshold, it allows a more precise detection of the 

overtaking events.  

 
Fig. 6  Overtaking Violation Detection 

 

����� � �� � ��
2  , �� � ��

2  
(8) 

 

 

1521



III. RESULTS AND DISCUSSION 

This section presents a comprehensive evaluation of the 

experimental studies conducted to assess the performance of 

various object detection models in Subsection A, traffic light 

state recognition in Subsection B, red-light violation 

detection in Subsection C, and overtaking violation detection 
in Subsection D. Experimental results of each proposed 

model component are presented in this section. The 

experiments were conducted using real-life CCTV footage 

collected from online sources to allow the experiments to 

reflect the real-world scenarios as closely as possible. 

The proposed system primarily receives live traffic video 

feeds captured by CCTV cameras deployed at strategic 

locations along the roadway. The camera should be placed 

on a higher level with a top-down view, giving it a clear 

perspective to identify vehicles, lanes, and the traffic light 

state. The captured video feeds serve as the data source for 
the system’s detection of traffic violators on the road. 

CCTV camera with specific criteria is compulsory for the 

traffic surveillance set up to capture the live traffic video 

feeds: 
 Internet Protocol (IP) camera, 

 RGB CMOS sensor, 

 Waterproof, 

 High resolution, 

 Wide-angle lenses. 

Based on these requirements, a few cameras have been 

selected for consideration: 

 Axis Communications Q1786-LE, 
 Hanwha Vision PNO-A9081RLP, 

 Honeywell HC30WB5R2. 

All experiments were conducted on Kaggle with: 

 GPU: NVIDIA T4 x2, having 2 x 2560 CUDA cores, 

 CPU: Intel(R) Xeon(R) CPU @ 2.20GHz, with 4 

cores, 

 RAM: 32 GB, 

 Disk: 20 GB. 

A. Object Detection 

This section presents the evaluated performance of 

different variations of object detection models, including 

the YOLOv7 model, YOLOv8n model, and YOLOv8x 

model. The evaluation is conducted using a confusion matrix 

and accuracy as shown in Fig. 7. The explanation of each 

matrix is stated below: 

 True Positive (TP): Model correctly identifies the 

presence of a condition, 

 True Negative (TN): Model correctly identifies the 

absence of a condition, 

 False Positive (FP): Model predicts a condition to be 
present, but it is absent, also known as Type I Error,  

 False Negative (FN): Model predicts a condition to be 

absent, but it is present, also known as Type II Error. 

 

 
Fig. 7  Confusion Matrix 

 

Several performance metrics can be derived from the 

confusion matrix, allowing a deeper understanding of the 

model’s performance. This includes precision, recall, F1 

score, and accuracy [32-33]. The explanation and equation 

of each metric are stated below: 

 Precision: Measures the proportion of positive class 

correctly identified by the model, 

 Recall: Measures the proportion of actual positive 

identified correctly by the model, 

 F1 Score: Measures the harmonic mean of precision 
and recall, 

 Accuracy: Measures the overall correctness of the 

model. 
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To evaluate the performance of each model, a confusion 

matrix has been utilized to assess the performance of each 

model variation in detecting traffic lights and vehicles. In 

addition, the accuracy of each object detection variation is 

computed using Equation 11 for comparison purposes and to 

determine the optimal solution for traffic surveillance tasks. 

The traffic light and the overall accuracy are computed for 

each model. To ensure a fair comparison between different 

models, 50 images obtained from the testing set have been 

used to evaluate the models by computing their confusion 

matrix. Each model variation, along with its confusion 
matrix, prediction result, and accuracy, is presented in this 

section. 

1)   YOLOv7 Model: Table 2 shows the confusion matrix 

of YOLOv7 model. From the confusion matrix, the 

computed Accuracy TL of the YOLOv7 model is 86.56%, 

whereas the computed Accuracy OVERALL is 88.83%. 
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TABLE II 

CONFUSION MATRIX OF YOLOV7 

 Actual class 

Traffic 

Light 

Car Background 

Predicted 

class 
Traffic Light 161 0 10 
Car 0 173 8 
Background 15 9 0 

2)   YOLOv8n Model: Table 3 shows the confusion matrix 
of the trained model using YOLOv8n with 100 epochs. From 

the confusion matrix, the computed Accuracy TL of the 

YOLOv8n model is 58.56%, which indicates that it does not 

generalize well in detecting traffic lights on the road. 

TABLE III 

CONFUSION MATRIX OF YOLOV8N WITH 100 EPOCHS 

 Actual class 

Traffic Light Background 

Predicted 

class 
Traffic Light 106 5 
Background 70 0 

 

 
Fig. 8  Loss and Metrics Chart of YOLOv8n with 100 Epochs 

 
Fig. 9  Confusion Matrix of YOLOv8n with 100 Epochs 

 

When observing the loss and metrics chart and confusion 

matrix of the trained model using YOLOv8n in Fig. 8, the 

model is learning well without any signs of overfitting. The 

loss curve decreases rapidly, indicating that the model is 

learning effectively. In addition, the precision, recall, and 

mAP values are quickly increasing, reflecting that the model 

is getting good predictive performance. The confusion 

matrix of the YOLOv8n model in Fig. 9 also shows that the 

model can correctly predict the traffic light class 92% of the 

time.  
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However, the model validation on the 50 images obtained 

from the frames of the traffic videos shows that the model 

accuracy was reduced to 58.56%. This may be due to the 

lack of variations in the traffic light dataset, which caused 

the trained model not to generalize well, especially when the 

video resolution is low and when it is in a challenging 

environment, such as at nighttime when the lighting 

environment is dim. 

3)   YOLOv8x Model:  Table 4 shows the confusion 

matrix of the YOLOv8x model. Based on the confusion 
matrix, the YOLOv8x model achieves an Accuracy TL of 

85.64%. Conversely, the YOLOv8x model achieves an 

Accuracy OVERALL of 91.28%. 

TABLE IV 

CONFUSION MATRIX OF YOLOV8X 

 Actual class 

Traffic 

Light 

Car Background 

Predicted 

class 
Traffic 

Light 

155 0 5 

Car 0 180 4 
Background 21 2 0 

When comparing the accuracy of traffic light detection 

(Accuracy TL) and the overall accuracy (Accuracy 

OVERALL), YOLOv8x gives the best overall accuracy of 

91.28%. Even though YOLOv7 has a higher traffic light 

accuracy than YOLOv8x, the difference in their accuracy is 

less than 2%. Therefore, YOLOv8x was chosen for our 

object detection task in detecting objects on roads. 

B. Traffic Light State 

Several video footages from the real world are fed into the 
model as a testing set to evaluate how well the proposed 

model can identify the traffic light and their state. The 

experimental result of traffic light detection is listed in Table 

5, and the experimental result of traffic light state detection 

is listed in Table 6. From the result, traffic light detection in 

the morning can achieve a success rate of 100%. This 

indicates that the model can detect the traffic light as a 

“traffic light” without much problem in the morning. 

However, traffic light detection at night has a lower 

detection accuracy of 84.62% success rate, mainly due to the 

lighting issues. The model has difficulty recognizing the 
traffic lights at nighttime, especially when the video has a 

lower resolution. Additionally, experiments have been done 

to evaluate the model’s performance in accurately 

identifying the current state of traffic lights. The results 

obtained in the morning and night-time are 100% and 

84.62%, respectively. This indicates that the model can 

perform well in identifying the current state of traffic lights 

in the morning but has difficulty determining the red-light 

state at night.  

TABLE V 

EXPERIMENTAL RESULT OF TRAFFIC LIGHT DETECTION 

Times of 

Day 

Total 

Input 

Detected Success Rate 

Morning 25 25 100% 
Night 26 22 84.62% 

 

TABLE VI 

EXPERIMENTAL RESULT OF TRAFFIC LIGHT STATE 

Times of 

Day 

Total 

Input 

Detected Success Rate 

Morning 25 25 100% 
Night 13 11 84.62% 

 

Based on the experimental results, the proposed model 

has difficulty detecting traffic lights at night due to the dim 

environment, which causes the traffic light to be partially 

absent. This has caused the proposed model not to be able to 

recognize it as a traffic light due to the challenging lighting 

environment. Fig. 10 shows an example of undetected traffic 

lights due to the dim lighting, resulting in vague images. 
 

  
Fig. 10  Vague Traffic Light at Night-Time 

 

In fact, the instability of traffic light recognition at 

nighttime has caused the traffic light state identification to 
have a lower accuracy than in the morning. The traffic light 

state identification is highly dependent on traffic light 

detection because it is required to detect a traffic light before 

being processed for traffic light state identification. As the 

detection model may not be able to detect the traffic light all 

the time, this has caused the traffic light state not to be 

identified as no traffic light has been detected. 

C. Red Light Violation 

This section shows the result of the proposed red light 

violation detection by feeding the model with real-life traffic 

videos obtained from real-time CCTV footage. Fig. 11 

shows the proposed model's capability in detecting red light 

violators on the road. When the traffic light is in its red state, 

a vehicle is not allowed to cross the traffic stop lane detected. 

Otherwise, the corresponding vehicle will be immediately 

classified as a red-light violator. 
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Fig. 11 Red Light Violation Detection Result 

 

During model evaluation, traffic video under the green 

light state has also been fed into the model to assess the 

model accuracy and reliability. As shown in Fig. 12, when 

the current traffic light is in green state, red light violation 

alert will not be triggered even when a vehicle has crossed 

the stop line. 

 

 
Fig. 12  Green Light Result 

D. Overtaking Violation 

This section shows the results of the overtaking detection 

by feeding the model with real-life traffic videos obtained 

from real-time CCTV footage. A traffic video without a 

double line has been utilized to demonstrate the overtaking 

scenario, assuming that the predefined lane is the double line 

on the road. The result in Fig. 13 shows the proposed model 

output in detecting illegal overtaking on the road. When a 

vehicle crosses the indicated overtaking lane, that particular 

vehicle will be immediately classified as overtaking by 
turning its bounding box to red color and with a text on top 

stating overtaking has been performed by that specific 

vehicle as an alert message for the relevant authorities. 

Despite the advancements in object detection and tracking 

technologies, the complexities inherent in real-world traffic 

environments present several challenges impacting the 

system’s performance. One area for improvement of the 

proposed system in red light violation detection is its high 

dependency on the detected traffic stop line. It was found 

that the proposed model could not detect the red-light 

violator due to the incomplete detection of the stop line 
when the vehicle is crossing the identified line in a red state. 

The stop line was initially accurately detected, but the lane 

detection became partially obscured when the vehicle 

crossed the line. Based on the analysis, the reason for it not 

being able to detect the stop line accurately may be due to 

the occlusion by the vehicle. The vehicle's presence has 

blocked the camera’s view, leading to the lane not being 

fully detected at the part where occlusion occurs. To address 

this issue, it is essential to position the camera strategically 

to ensure that occlusion would not affect the line detection 

result. 

 

 

 
Fig. 13 Overtaking Violation Detection Result 

 

In contrast, misclassification of overtaking could happen 

on the vehicle near the edge of the camera frame when it did 

not perform illegal overtaking. This could be due to the 

proposed model's inability to effectively handle scale 

variation and perspective changes. As the vehicle is moving 

further away from the camera, the scale variation of the 

vehicle and the changes in perspective may cause the 

distance calculations to be skewed, leading to a wrong 

calculation when determining if a car has been overtaken 
illegally. The misclassification of overtaking detection could 

be addressed by adjusting the position of the camera 

viewpoint. In terms of technical enhancement, the possible 

solution could be to enhance the preprocessing of the image 

to normalize the perspective distortion using techniques like 

Homography. 

IV. CONCLUSION 

In conclusion, the proposed system shows a promising 
result in identifying traffic violators on the road. The system 

works by first receiving an input video. Then, each frame of 

the video is processed for road object detection including the 

detection of vehicles and traffic lights. Detected vehicles are 

provided with their unique identifier by Deep SORT tracker, 

which is used to keep track of each vehicle as an individual. 

On the other hand, detected traffic lights in each frame will 

be processed for traffic lights state identification to identify 
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whether the current state is red, yellow, or green. In terms of 

automated lane detection which indicates the white line at 

traffic lights and the double line for overtaking identification, 

the lane is detected by combining both Canny Edge 

Detection and Hough Transform techniques for the 

automated lane detection in each frame. After these 

operations, the system processes the frames to determine 

whether any vehicle has violated the traffic rule by deciding 

whether they have passed the detected lane when the traffic 

light state is red or crossed the double line on the road. 
However, the proposed model depends on the environmental 

lighting conditions and the camera’s position to accurately 

identify traffic violators. Furthermore, the proposed model 

relies on the accuracy of object detection. A high object 

detection accuracy would yield a better performance in 

identifying red light violators and overtaking violators. 
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