
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Traffic Violation Detection Using Computer Vision Techniques

Chin Sin Ong a, Tee Connie b,*, Michael Kah Ong Goh b
a Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Melaka, Malaysia

b Multimedia University, Jalan Ayer Keroh Lama, Melaka, Malaysia

Corresponding author: *tee.connie@mmu.edu.my

Abstract—The increasing number of road accidents is still a global concern. Traditional approaches to detecting traffic violators on

the road, such as radar guns and sensors, are expensive and time-consuming to maintain and install. This often results in inefficient

and ineffective detection of traffic violators. This paper proposes a more cost-effective and efficient approach to traffic violation

detection utilizing visual data from CCTV footage. Specifically, the method targets two common violations: crossing red lights and

overtaking on double lines. In this study, YOLO is integrated for road object detection, providing the detection of vehicles and traffic

lights on the road for our system. Then, the Deep SORT tracker tracks detected vehicles, ensuring continuous monitoring over time.

An automated lane detection technique is formulated to identify the stopping line/lane for red light violation detection, enabling

precise detection of vehicles that cross the stop lane during red light. For overtaking detection, the system detects the double line to

serve as the boundary that vehicles should not cross, identifying illegal overtaking. Furthermore, point-line distance calculation is

utilized to detect traffic violators by analyzing their tracked trajectories and positions. The proposed solution is evaluated using real-

world CCTV footage from online repositories to reflect the real-world scenarios as closely as possible. Experimental results show that

the proposed techniques achieve promising detection of real-time traffic violators, which leads to a safer environment for road users.

Keywords— Traffic violation detection; computer vision; YOLO; lane detection; state recognition; point-line distance.

Manuscript received 11 Apr. 2024; revised 26 Jul. 2024; accepted 20 Oct. 2024. Date of publication 30 Nov. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The traffic surveillance system is crucial for traffic

authorities to ensure public safety and maintain an efficient

transportation network. It is being utilized worldwide to

manage traffic flow, improve road safety, and detect traffic

violators. Unfortunately, road accidents remain one of the
top 5 causes of death in Malaysia, occupying 3.2% of the

principal causes of death according to the statistics published

by the Department of Statistics Malaysia (DOSM) [1]Most

accidents are undoubtedly caused by reckless human driving

behaviors, such as running a red light and illegal overtaking.

The high frequency of accidents from humans’ reckless

driving has caused many people, including innocents, to lose

one’s life and be injured. Most accidents are caused by these

reckless drivers who break the traffic rules, bringing the

safety of road users in danger [2]. This issue should be

addressed and given due attention. Implementing an AI-
based traffic surveillance system offers a potential solution

to detect these violators and ensure they face appropriate

consequences. With the high frequency and increasing

volume of accidents over the years, it has become

increasingly difficult for traffic authorities to manage and

control the traffic effectively [3]. Consequently, road users

face various challenges, such as congestion and safety issues.

Integrating AI technology into traffic surveillance systems

has become essential for traffic authorities to manage traffic

flow more efficiently.

Currently, most traffic violation detection systems still

use the traditional approach with radar guns and sensors,

which can be costly to maintain and install. Moreover, these
sensors often demand more frequent maintenance than

CCTV systems. Sometimes, even manual police patrols are

required to catch traffic offenders, a method that can be both

costly and inefficient. Therefore, an adaptable system for

integration into CCTV infrastructure can significantly reduce

the overall cost and labor usage.

This paper proposes a visual-based system that can be

integrated into a CCTV system to control traffic flow and

detect traffic violators. The proposed system is designed to

detect traffic violators, including illegal overtaking and red

light running, which can help lessen reckless drivers and
reduce the road accident rate. Therefore, implementing the

1515

JOIV : Int. J. Inform. Visualization, 8(3-2): IT for Global Goals: Building a Sustainable Tomorrow - November 2024 1515-1527

system could help smooth the traffic flow as drivers are

more likely to adhere to traffic regulations, leading to fewer

disruptions and delays on the road network.

The system is designed to process real-time video footage

received from CCTV cameras installed at selected locations.

Given its integration with CCTV technology, the system's

coverage extends to any area where the proposed model is

deployed. With its versatility, the system can effectively

detect traffic violations across diverse settings, including

highways, roads, and intersections. The system combines
different algorithms that are responsible for different tasks.

YOLO is used to detect road objects, including vehicles and

traffic lights. Nonetheless, lane detection is designed to be

automated using various image processing techniques, such

as Canny edge detection and Hough transform, to outline the

actual lane in the video frames. Point-line distance is then

calculated according to the vehicles and the identified line

for traffic violation detection.

Research on traffic surveillance systems has been gaining

more attention in recent years. Due to the rapid advancement

of AI technology, there has been an increasing interest in
using machine learning and deep learning techniques to

monitor and manage traffic flow on roads, highways, and

intersections. Therefore, this paper presents a comprehensive

review of the existing research literature in the field of traffic

surveillance systems. The literature review mainly focuses

on reviewing the conventional and deep learning methods

proposed by researchers for traffic surveillance detection in

recent years. There have been various methods utilized by

researchers in the field of traffic surveillance, such as

calculating the deceleration rate of vehicles when they come

close to the traffic stop lane using a Support Vector Machine
(SVM) and Random Forest (RF) [4], [5], Vehicular ad hoc

Network (VANET) [6]. Particle Swarm Optimization (PSO)

[7], Convolutional Neural Network (CNN) [8], [9] and other

algorithms for detecting red light running and other common

traffic violations on the road, with their corresponding

advantages and drawbacks.

A. Conventional Methods

In the study by Katanyoo et al. [10], the authors used

MSD to identify red-light runners and lane-altering
violations before traffic lights. HSV color space is used

instead of RGB, which is more perfectly suited for computer

vision. In addition, HSV color space is also used to track

vehicles, which works by deducting the background frame’s

average hue value from the current frame’s average hue

value. The difference in hue value is then used to identify the

possible presence of vehicles. This has reduced the

frequency of mistakenly detecting shadows as vehicles.

Vehicle trajectories are computed using MSD. The lower

difference in MSD value indicates a higher likelihood that

the vehicle in different frames is similar. Lane-altering
violations are detected by analyzing the direction changes in

vehicle trajectories. On the other hand, when a vehicle

crosses the red light’s reference line, it will be recognized as

a red-light runner. The findings show that traffic light signal

detection was 100% accurate. However, the proposed system

performs poorly on lane-altering detection, with only 28

violations successfully detected. Vehicle violation detection

got an average accuracy of 79%, whereas small, medium,

and large vehicles have an accuracy of 78%, 85%, and 74%,

respectively.

Nonetheless, Mochamad et al. [11] researched to detect

traffic light runners at road intersections using BLOB and

MST methods. The road intersections are given reference

lines for markers in the CCTV to detect traffic offenses.

Thus, vehicles will be marked as running the red lights if

they cross the line when the traffic lights are red. The dataset

was pre-processed with a few stages from thresholding,

contour, and convex hull to Binary Large Object (BLOB).
The MST algorithm was then applied in vehicle tracking to

detect traffic violations. The authors utilized the MST

algorithm to track and predict the position of vehicles over

time by examining the changes in their position in

consecutive frames. The pro of the proposed system is that

cars are more likely to be classified correctly because they

are only classified and tracked after passing the reference

line. This ensures that all the vehicles have similar physical

dimensions captured from the same perspective and

orientation. In contrast, the performance of the proposed

system could be more stable due to the inability to deal
perfectly with a dynamic environment. For instance,

congestion would affect the mean shifting performance, and

the system has the risk of wrongly identifying the lights

reflected on the road as a car. The results correctly classify

cars and motorcycles are 71% and 79%, respectively.

However, only 58% accuracy in detecting traffic light

runners was achieved in this research using the BLOB and

MST algorithms.

There exists a recent work by Akhilalakshmi et al. [12]

proposing a traffic violation detection system capable of

detecting vehicles swerving and vehicles blocking pedestrian
lanes. Haar Training tool, a software tool used to train

classifiers for object detection in OpenCV, was utilized in

vehicle detection. Genetic Algorithm (GA) was used to

determine whether a vehicle violated traffic rules. The

algorithm consists of multiple steps, starting with initializing

the population by generating values for a and b, referred to

as the chromosomes. Best chromosomes are chosen for the

fitness function, and chromosomes that produce low fitness

values are eliminated. The trimmest fit members of the

population are then replaced with new chromosomes whose

gene values are changed. This process continues until the

algorithm finds the optimal solution. Tesseract software is
used to detect and capture the license plate number of

vehicles that were found to have violated the traffic rules. In

this paper, the authors found that the proposed algorithm is

more efficient in finding an optimal solution than the

standard algorithms, as it uses an ample search space.

However, computational resources are expensive and time-

consuming using an ample search space. The result shows

that the fitness value increases over generations, which

indicates that the algorithm is heading towards more optimal

solutions over generations. Overall, the proposed system by

the authors shows promising results for detecting traffic
violations and has the potential to be further improved

through future research.

B. Deep Learning Methods

With the increasing popularity and adoption of deep

learning techniques, the study by Joel et al. [13] shows an

1516

overall accuracy of 100% in traffic light runner detection

and 92.1% in speeding detection. The authors utilized SSD,

which uses CNN as its base architecture in object detection.

The authors performed feature extraction on the dataset

beforehand to improve system performance. Three feature

extractors, including MobileNet, Inception V2, and ResNet

50, are used with SSD and compared with each other in the

feature extraction phase. The NMS process has been done to

remove duplicate bounding boxes on each vehicle. A stop

line has been set up to detect if a vehicle runs a red light
when the traffic light is indicating red. Euclidean Distance

has been used in the system to estimate the vehicle’s speed.

The Euclidean Distance equation is computed to measure

the displacement of vehicles in pixels. Then, a unit

conversion mathematical equation is applied to convert the

speed to the unit of km/h. Out of the three available feature

extractors, MobileNet was chosen in the proposed system

due to its high accuracy of 98.90% and processing speed of

0.08 seconds per frame, which is the fastest among the three.

Overall, the proposed system can detect all traffic light

runners accurately. However, the proposed system requires
manual traffic light timer insertion to determine the current

traffic light’s state, which is inefficient regarding real-time

traffic monitoring.

In the same year, Srinivas et al. [14] developed a traffic

violation detection system using the Region-based

Convolutional Neural Network (R-CNN) method to identify

vehicles running red lights. The proposed system could

identify plate numbers and estimate the speed of any vehicle

that violates the traffic rules, enabling relevant authorities to

take any required action. Support Vector Machine (SVM)

and CNN have been used to extract objects and features
from images in object detection. Predefined lines are drawn

on the screen to determine whether a vehicle has crossed the

line when the traffic lights turn red, which results in

violating the traffic rules. Optical Character Recognition

(OCR) recognizes the vehicle's number plate. The

experiments show the system's capability to detect red light

runners and capture the violating vehicles. It takes 6.55

seconds to execute the whole process. The proposed system

allows real-time traffic monitoring, which provides efficient

traffic monitoring management and reduces the workload of

traffic authorities. However, the system requires manual

insertion of a traffic stop line, and it is highly dependent on

the video quality for accurate license plate recognition.

Besides the mentioned works, Ilker et al. [15] propose a

contextual anomaly detection method to detect various

traffic anomalies, including point and contextual anomalies.

The surveillance system was implemented with a Contextual
Anomaly Detection Network (CADNet) on an Unmanned

Aerial Vehicle (UAV). Instead of letting the machine learn

about the anomalies, standard environmental patterns were

fed into the machine. Besides the differences in training

using standard traffic patterns, the proposed method uses

UAV instead of CCTV, which is much more costly.

“CADNet consists of an encoder, decoder, and a context

subnetwork” [15]. The encoder is responsible for processing

incoming data, and the context subnetwork gathers more

contextual attributes from the environment and produces

different encoded representations to capture essential
information from the input. The decoder then creates a

reconstructed sample from concatenated encoded

representations. The method uses reconstruction error to

detect anomalies through a reconstruction-based approach.

As the reconstruction error increases, the likelihood of

anomaly increases. Synthetic-generated anomalies were

inserted into the dataset to evaluate the effectiveness of

CADNet in point anomaly detection. The authors reported

that their proposed method has higher accuracy than others.

The accuracy of detecting point anomalies was 91.2%, and

the accuracy of detecting contextual anomalies was 86.6%.
The proposed model can detect various traffic anomalies,

from point anomalies to contextual anomalies, which are

challenging with relatively high accuracy. Still, unlike other

existing models, the proposed model uses UAV, which uses

CCTV and thus result in higher overall costs, including

maintenance, equipment, and deployment cost. A summary

of state-of-the-art methods is provided in Table 1.

TABLE I

A SUMMARY OF STATE-OF-THE-ART METHODS

Author Method Result Pros Cons

Katanyoo et
al. [10]

MSD Traffic light detection:
100%
Violation detection: 79%

Uses HSV in vehicle detection
which reduces frequency of
mistakenly detect shadow as vehicle

Not well-performed in lane altering
violation

Mochamad et
al. [11]

MST Accuracy: 58% Vehicle more likely to be classified
correctly due to consistent position

and angle

Hard to detect vehicles during traffic jam,
morning lights on road can be mistakenly

recognised as vehicle
Akhilalakshmi
et al. [12]

GA 0.056 fitness value from
45 to 100 generation

Provide optimal solution Large search space means more
computational cost, and time-consuming

Joel et al. [13] SSD Red light violation
detection: 100%
Speeding detection:
92.1%

Able to detect all traffic light runner
accurately

Manual insertion of traffic light timer
which is inefficient in real-time traffic
monitoring

Srinivas et al.
[14]

R-CNN Processing time: 6.55s Proposed system allows real-time
traffic monitoring

Requires manual insertion of traffic stop
line, and highly dependent on the video

quality for accurate license plate
recognition

Ilker et al. [15] CADNet point anomaly: 91.2%
Contextual anomaly:
86.6%

Ability to detect various traffic
anomalies

Model uses UAV, overall cost of UAV is
expensive

1517

When comparing the disparities between the proposed

and existing systems, the proposed system enhances the

existing works due to its lane detection and traffic light state

automation without manual intervention. Furthermore, the

proposed system reduces overall costs and improves

efficiency by integrating CCTV instead of a UAV system.

II. MATERIALS AND METHOD

The proposed system can detect two traffic violation

scenarios: red light running and illegal overtaking. When a

vehicle crosses the detected stop line when the traffic light is

red, it will be immediately identified as a red-light runner.

On the other hand, vehicles that overtake another vehicle

illegally will be determined as illegal overtaking. This can be

determined when a vehicle overtakes in the occurrence of a

double line where overtaking is not allowed. Fig. 1 shows an

overview of the proposed system. In general, when the

proposed system receives an input video, road objects,

including vehicles and traffic lights in each frame of the

video, are detected using YOLO [16]. Each detected vehicle

will be given with its unique identifier and tracked using

Deep SORT [17] technique. Next, the traffic stop lane and
overtaking double line are identified using Canny Edge

Detection [18] and Hough Transform [19] techniques.

Fig. 1 Flowchart of the proposed traffic violation detection system

The traffic stop lane indicates the line that is not allowed

to be crossed when the traffic light is in a red state, and the

overtaking double line indicates the area not allowed to be

crossed by vehicles. In converse to the detected vehicles,

detected traffic lights in each frame will be processed for

current traffic light state identification to determine whether

the current state is red. After these procedures, the proposed
system detects any traffic violations occurring, including

traffic light violations and illegal overtaking violations.

There are two conditions to determine whether a vehicle has

violated the traffic light rule: the current traffic light state is

red, and the vehicle crosses the identified lane. If both

conditions are fulfilled, that vehicle will be detected as a

traffic violator and thus send an alert message to the traffic

authorities. On the other hand, when a vehicle crosses the

identified overtaking double line, that vehicle will be

classified as a traffic violator and send an alert message to

the traffic authorities.

A. Object Detection

YOLO is a popular and widely used algorithm in real-

time object detection. It is given the name You Only Look

Once because of its ability to process images quickly

and detect real-time objects with high accuracy. The

algorithm applies CNN [20] that divides the image into

small pieces and predicts the class probabilities by

processing those individual pieces. When an object is

detected, it will be assigned a bounding box with its

predicted class and the likelihood of it belonging to that class.

These objects are classified by training the model with

a training set annotated with their corresponding predefined

classes. The trained model will then predict the occurrence
of objects on an image based on the confidence score

according to the predefined classes. The detected object will

be assigned a bounding box with the highest confidence

score object class. When an image or video is fed into

YOLO, it divides the image into equally small grids. Each of

these small grids is responsible for predicting objects within

its boundaries. Each grid cell has its respective vector, as

shown in Equation 1.

(1)

Pc represents the probability of the presence of an object

within the grid cell. Bx and By represent the bounding box's
location (center coordinates). At the same time, Bw and Bh

represent the object's size with its respective width and

height. Finally, C1 and C2 represent the probability of the

object belonging to a particular class. The number of C is

dependent on the total number of predefined classes. Non-

1518

Maxima Suppression (NMS) [21] is applied in post-

processing to overcome the common problem of redundant

and overlap bounding boxes in object detection. This will

allow YOLO to remove high overlapping bounding boxes

and keep the bounding box with the highest object score.

Object detection is the first yet important part of

accurately detecting the objects on the road in the proposed

system. As YOLO has a good performance, high speed, and

high accuracy in real-time object detection tasks and its

capability of detecting multiple objects within a single image,
it is utilized in this paper to detect road objects, including

vehicles and traffic lights. It is crucial to accurately detect

the objects on the road as accurate object detection highly

improves the performance and accuracy of red-light

violation detection. Therefore, three different variations of

YOLO algorithms, including YOLOv7 [22] model,

YOLOv8n [23] model, and YOLOv8x [24] The model has

been evaluated using the collected testing set to find the

optimal solution for road object detection.

Input frames are being processed for object detection

within frames using YOLO. Frames are converted to
PyTorch tensor to normalize the pixel values to the range of

[0,1]. Inference is made using a forward pass through the

YOLO algorithm to produce predictions. In the post-process,

NMS filters out redundant bounding boxes with low

confidence scores. It then annotates the original frames with

bounding boxes, labels, and other prediction information.

The bounding boxes of the detected vehicles are extracted

within the frames, and their corresponding confidence scores

and labels are passed for tracking. It associates the detections

with existing tracks and predicts new tracking for

unassociated detections [25].

B. Vehicle Tracking

Deep SORT is a multiple-object tracker algorithm capable

of tracking multiple objects in a single frame. When

comparing to the SORT algorithm, it is more efficient,

reliable, and accurate as it is designed as an extension of the

SORT algorithm to address the limitations of SORT. One of

the advantages of Deep SORT algorithm is its capability at

handling occlusions using deep learning-based appearance

features. In addition, it is more robust in tracking objects that
changes their appearance which may be due to the

occurrence of rotation or scaling.

In Deep SORT, two main algorithms, including

the Kalman Filter [26] and Hungarian Algorithm [27] are

utilized for object tracking. Kalman Filter is integrated into

Deep SORT to estimate the state of the detected objects in

subsequent frames. Thus, it helps predict the detected

objects' future position based on their current state and

motion, which is essential in object tracking. On the other

hand, the Hungarian Algorithm is incorporated in Deep

SORT to find the best match between the predicted positions
by the Kalman Filter and the newly detected objects across

frames using the cost matrix. The Hungarian Algorithm aims

to determine whether a predicted position belongs to a

specific detected object.

Therefore, Deep SORT, with its reliable and efficient

ability to track multiple objects, is utilized in this paper to

track multiple vehicles on the road in real-time. This allows

the proposed model to keep track of the trajectories and

motion of each vehicle, thus further processing for red light

violation detection. Fig. 2 shows the architecture of Deep

SORT receiving the input of detected objects using YOLOv8

and internally processing the detected objects for real-time

object tracking.

Fig. 2 Deep SORT Architecture [28]

C. Lane Detection

Canny Edge Detection is a well-known multi-state edge

detection algorithm. In canny edge detection, the gaussian

filter is first applied to the image to smoothen it by blurring

it thus resulting in noise reduction. Then, the blurred image

is passed for filtering with horizontal Sobel kernel and

vertical Sobel kernel to get the first derivative in the
horizontal direction Gx and the vertical direction Gy. By

using the Gx,Gy, gradient magnitude of each pixel indicating

the intensity of the edges as shown in Equation 2 and the

gradient direction of each pixel indicating the orientation of

the edges as shown in Equation 3 can be computed. Equation

4 and Equation 5 show the horizontal and vertical Sobel

kernel [29].

� � ���2 � ��2 (2)

	 �
��
� ���
��� (3)

1 2 1
0 0 0

�1 �2 �1
 (4)

�1 0 1
�2 0 2
�1 0 1

 (5)

After gradient calculation, the recognized edges may

appear to have different thicknesses. Therefore, Non-
Maxima Suppression (NMS) is performed to thin the thick

edges. It works by suppressing all the gradient values to zero

except for the remaining local maxima, representing the

presence of an edge in that pixel. The double threshold is

applied after NMS to determine potential edges. In double

thresholding, a high and low threshold is set to determine the

strong and weak pixels. Gradients greater than the high

threshold are known as the firm edges that will contribute to

the final edge. In contrast, gradients between the high and

low thresholds may or may not be included in the final edge,

depending on their connectivity. Lastly, edge tracking by

hysteresis is performed to turn the weak edges into firm
edges if they are connected. Otherwise, they are suppressed.

1519

Fig. 3 shows an example image of the output edges detected

after applying canny edge detection.

Fig. 3 A sample of Canny Edge Detection result

Hough Transform is a feature extraction technique to

detect lines, circles, or other shapes and curves. Its goal is to

find imperfect (broken or distorted) instances of objects

within similar shapes by voting. After an image edge has

been detected using a technique like canny edge detection, it

represents the line using Equation 6. r represents the rho

which is the shortest distance from the line to the origin (0,0)

in the image. θ represents the theta which is the angle

between x-axis and the line drawn from the origin to this
closest point whereas x, y are the coordinates of the points on

the line. Then, voting is performed to all possible lines that

could pass through the edge point in the image represented

by a pair of r,θ values. Lastly, the cells with the most votes

will be chosen for drawing a complete line [30]. Fig. 4

shows the result of Hough Transform after performing

Canny Edge Detection.

� � � ��� 	 � � ��� 	 (6)

Fig. 4 Hough Transform

In red light violation and overtaking violation detection, it

is crucial to accurately determine the lane on the road.

Therefore, Canny Edge Detection and Hough Transform

have been applied in lane detection to detect the traffic stop
line to identify red-light violators and the double line to

identify illegal overtaking violators on the road.

D. Traffic Light State Detection

YOLO is trained by feeding the model many traffic light

images, which are used to detect traffic lights in each video

frame. When the recognized object is a traffic light, it will

pass the bounding box as a parameter to identify the current

traffic light states. Traffic lights with their determined states

will be shown in the video after the proposed system

recognizes the current color state. Since the only important

characteristic in our scenario is to determine when the traffic

light is in the red state for red light violator detection, the

proposed system is designed to only categorize whether the

current traffic light state is red or not red. The proposed

system will show “Stop” on the traffic light when the

current traffic light state is red, whereas the system will

show “Go” in the video indicating that the current traffic

light state is either yellow or green, but not red. This allows

simplicity in indicating the traffic light state instead of
indicating different traffic color state (red, yellow, green).

As shown in Fig. 5, the dimension of the bounding box is

first segmented into three regions representing each region

where a different color state (red, yellow, green) is expected

to appear. Each segmented region is converted to HSV color

space to determine its color coding. With the predetermined

red mask, the red pixels are counted in the first segmented

region and if there is an existence of red pixel, the traffic light

state will be determined as red otherwise not red. By

segmenting the traffic light into three equal regions, it reduced

the error of traffic light state identification as some of the

border of the traffic lights is painted with yellow color which
could mislead the proposed system in detecting the correct

traffic light state. Algorithm 1 shows the process of the

proposed system in identifying the current traffic light state.

Fig. 5 Traffic Light State Diagram

Algorithm 1 Pseudocode Procedure for Traffic Light State

Detection
1. imgheight, imgwidth, _ = img.shape
2. height = imgheight / 3
3. convert each square to HSV colour

space
4. count red pixels in first segmented

square
5. if red > 0 then

 return “stop”
6. else

 return “go”
7. end if

1520

E. Red Light Violation Detection

Red light violations are a significant traffic safety concern

that should be addressed to reduce the accident rate on the

road [31]. This can be achieved by detecting the position and
movement of vehicles in relation to the traffic signals.

Therefore, the proposed system identifies red light violators

by tracking the vehicles’ movement and determining

whether a vehicle has crossed the traffic stop line when the

traffic signal is in the red state.

In real-time, there may be more than one traffic light from

different pathways captured by the CCTV camera. This may

yield to the system recognizing traffic lights from other

pathways thus affecting the traffic light violation detection

accuracy. To address this issue, a constraint is set to process

only the detected traffic light with the highest confidence
score for traffic light state identification.

Each of the detected vehicles is tracked using Deep SORT.

Each vehicle has their center point calculated on the bottom

edge of their corresponding bounding boxes representing the

vehicle’s position for movement and trajectory tracking. If

the traffic light is in “Stop” state (red light), it further checks

whether the vehicle’s center point has crossed the defined

stop line detected earlier at intersection. Any vehicle that is

found to cross the defined stop line when the traffic light

state is red will be identified as red-light violator with a red

bounding box on that particular vehicle displayed in the

video.
Point-line distance is used with its formula as shown in

Equation 7 to determine whether a vehicle has crossed the

stop line when the traffic light is red. x0, y0 represents the

center point of the vehicle, while x1, y1, x2, y2 represents the

coordinates of the intersection stop line. In red light violation

detection, a distance threshold of 1 is set. A vehicle with its

computed point-line distance less than 1 will be identified as

crossing the stop line. The traffic violation detection process

is shown in Algorithm 2.

� � ���2 � �1��0 � ��2 � �1��0 � �2�1 � �2�1�
���2 � �1�2 � ��2 � �1�2

 (7)

Algorithm 2 Pseudocode Procedure for Traffic Violation

Detection
1. function

point_line_distance(point,line)
2. x0, y0 = point
3. x1, y1 = line[0]
4. x2, y2 = line[1]
5. numerator = |(y2 – y1)x0 – (x2 –

x1)y0 + x2 x y1 – y2 x x1|
6. denominator = sqrt[(y2 – y1)2 + (x2

– x1)2]
7. distance = numerator / denominator

 return distance
8. end function

9. function

violation(center,line,threshold=1)
10. distance =

point_line_distance(center,line)
11. if distance < threshold then

 return True
12. else

 return False
13. end if
14. end function
15.
16. for Each frame in video do
17. for each detected vehicle in frame

do
18. center = (centerx, centery)
19. line = [(startx, starty),

(endx, endy)]
20. result =

violation(center,line)
21. if True then
22. Mark vehicle with red

bounding box AND display “red light
violation” text

23. end if
24. end for
25. end for

F. Overtaking Violation Detection

Any illegal overtaking violation is known as a vehicle

overtake under the existence of double line. Therefore,

overtaking is identified by determining whether a vehicle has

crossed the detected double line where overtaking is not

allowed. The center point of vehicles is first determined by

calculating their corresponding bounding boxes bottom edge

center point. The center point is then utilized to determine

whether it has intersected the detected double line. Fig. 6
illustrates the detection of overtaking violation by the

proposed system. When a vehicle is detected using YOLO,

the assigned bounding box with its corresponding

coordinates x1, x2, y1, y2 will be used for the calculation of

the center point on the bottom edge of the bounding box

using Equation 8. If the center point crossed the detected

lane, that particular vehicle will be immediately recognized

as traffic violator thus generating an alert message of

overtaking detected on that vehicle with a red bounding box.

The designed logic uses a point-line distance formula as

stated in Equation 7 to check whether the vehicle has crossed

the double line. The distance threshold in overtaking
detection is set as 0.5. By using the point-line distance

calculation as shown in Equation 7, the proposed system is

able to identify whether a vehicle has crossed the line

causing overtaking to appear. The distance threshold of 0.5

units is used due to the overtaking events typically involving

closer proximity to the double line. With a smaller distance

threshold, it allows a more precise detection of the

overtaking events.

Fig. 6 Overtaking Violation Detection

����� � �� � ��
2 , �� � ��

2
(8)

1521

III. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the

experimental studies conducted to assess the performance of

various object detection models in Subsection A, traffic light

state recognition in Subsection B, red-light violation

detection in Subsection C, and overtaking violation detection
in Subsection D. Experimental results of each proposed

model component are presented in this section. The

experiments were conducted using real-life CCTV footage

collected from online sources to allow the experiments to

reflect the real-world scenarios as closely as possible.

The proposed system primarily receives live traffic video

feeds captured by CCTV cameras deployed at strategic

locations along the roadway. The camera should be placed

on a higher level with a top-down view, giving it a clear

perspective to identify vehicles, lanes, and the traffic light

state. The captured video feeds serve as the data source for
the system’s detection of traffic violators on the road.

CCTV camera with specific criteria is compulsory for the

traffic surveillance set up to capture the live traffic video

feeds:
 Internet Protocol (IP) camera,

 RGB CMOS sensor,

 Waterproof,

 High resolution,

 Wide-angle lenses.

Based on these requirements, a few cameras have been

selected for consideration:

 Axis Communications Q1786-LE,
 Hanwha Vision PNO-A9081RLP,

 Honeywell HC30WB5R2.

All experiments were conducted on Kaggle with:

 GPU: NVIDIA T4 x2, having 2 x 2560 CUDA cores,

 CPU: Intel(R) Xeon(R) CPU @ 2.20GHz, with 4

cores,

 RAM: 32 GB,

 Disk: 20 GB.

A. Object Detection

This section presents the evaluated performance of

different variations of object detection models, including

the YOLOv7 model, YOLOv8n model, and YOLOv8x

model. The evaluation is conducted using a confusion matrix

and accuracy as shown in Fig. 7. The explanation of each

matrix is stated below:

 True Positive (TP): Model correctly identifies the

presence of a condition,

 True Negative (TN): Model correctly identifies the

absence of a condition,

 False Positive (FP): Model predicts a condition to be
present, but it is absent, also known as Type I Error,

 False Negative (FN): Model predicts a condition to be

absent, but it is present, also known as Type II Error.

Fig. 7 Confusion Matrix

Several performance metrics can be derived from the

confusion matrix, allowing a deeper understanding of the

model’s performance. This includes precision, recall, F1

score, and accuracy [32-33]. The explanation and equation

of each metric are stated below:

 Precision: Measures the proportion of positive class

correctly identified by the model,

 Recall: Measures the proportion of actual positive

identified correctly by the model,

 F1 Score: Measures the harmonic mean of precision
and recall,

 Accuracy: Measures the overall correctness of the

model.

��������� � �
 � � !� (9)

"��
� �
 � � !$ (10)

!1 %���� � 2 ���������� ∗ "��
##�
��������� � "��
(11)

'��(�
�� � � � $
 � � !� � !$ � $ (12)

To evaluate the performance of each model, a confusion

matrix has been utilized to assess the performance of each

model variation in detecting traffic lights and vehicles. In

addition, the accuracy of each object detection variation is

computed using Equation 11 for comparison purposes and to

determine the optimal solution for traffic surveillance tasks.

The traffic light and the overall accuracy are computed for

each model. To ensure a fair comparison between different

models, 50 images obtained from the testing set have been

used to evaluate the models by computing their confusion

matrix. Each model variation, along with its confusion
matrix, prediction result, and accuracy, is presented in this

section.

1) YOLOv7 Model: Table 2 shows the confusion matrix

of YOLOv7 model. From the confusion matrix, the

computed Accuracy TL of the YOLOv7 model is 86.56%,

whereas the computed Accuracy OVERALL is 88.83%.

1522

TABLE II

CONFUSION MATRIX OF YOLOV7

 Actual class

Traffic

Light

Car Background

Predicted

class
Traffic Light 161 0 10
Car 0 173 8
Background 15 9 0

2) YOLOv8n Model: Table 3 shows the confusion matrix
of the trained model using YOLOv8n with 100 epochs. From

the confusion matrix, the computed Accuracy TL of the

YOLOv8n model is 58.56%, which indicates that it does not

generalize well in detecting traffic lights on the road.

TABLE III

CONFUSION MATRIX OF YOLOV8N WITH 100 EPOCHS

 Actual class

Traffic Light Background

Predicted

class
Traffic Light 106 5
Background 70 0

Fig. 8 Loss and Metrics Chart of YOLOv8n with 100 Epochs

Fig. 9 Confusion Matrix of YOLOv8n with 100 Epochs

When observing the loss and metrics chart and confusion

matrix of the trained model using YOLOv8n in Fig. 8, the

model is learning well without any signs of overfitting. The

loss curve decreases rapidly, indicating that the model is

learning effectively. In addition, the precision, recall, and

mAP values are quickly increasing, reflecting that the model

is getting good predictive performance. The confusion

matrix of the YOLOv8n model in Fig. 9 also shows that the

model can correctly predict the traffic light class 92% of the

time.

1523

However, the model validation on the 50 images obtained

from the frames of the traffic videos shows that the model

accuracy was reduced to 58.56%. This may be due to the

lack of variations in the traffic light dataset, which caused

the trained model not to generalize well, especially when the

video resolution is low and when it is in a challenging

environment, such as at nighttime when the lighting

environment is dim.

3) YOLOv8x Model: Table 4 shows the confusion

matrix of the YOLOv8x model. Based on the confusion
matrix, the YOLOv8x model achieves an Accuracy TL of

85.64%. Conversely, the YOLOv8x model achieves an

Accuracy OVERALL of 91.28%.

TABLE IV

CONFUSION MATRIX OF YOLOV8X

 Actual class

Traffic

Light

Car Background

Predicted

class
Traffic

Light

155 0 5

Car 0 180 4
Background 21 2 0

When comparing the accuracy of traffic light detection

(Accuracy TL) and the overall accuracy (Accuracy

OVERALL), YOLOv8x gives the best overall accuracy of

91.28%. Even though YOLOv7 has a higher traffic light

accuracy than YOLOv8x, the difference in their accuracy is

less than 2%. Therefore, YOLOv8x was chosen for our

object detection task in detecting objects on roads.

B. Traffic Light State

Several video footages from the real world are fed into the
model as a testing set to evaluate how well the proposed

model can identify the traffic light and their state. The

experimental result of traffic light detection is listed in Table

5, and the experimental result of traffic light state detection

is listed in Table 6. From the result, traffic light detection in

the morning can achieve a success rate of 100%. This

indicates that the model can detect the traffic light as a

“traffic light” without much problem in the morning.

However, traffic light detection at night has a lower

detection accuracy of 84.62% success rate, mainly due to the

lighting issues. The model has difficulty recognizing the
traffic lights at nighttime, especially when the video has a

lower resolution. Additionally, experiments have been done

to evaluate the model’s performance in accurately

identifying the current state of traffic lights. The results

obtained in the morning and night-time are 100% and

84.62%, respectively. This indicates that the model can

perform well in identifying the current state of traffic lights

in the morning but has difficulty determining the red-light

state at night.

TABLE V

EXPERIMENTAL RESULT OF TRAFFIC LIGHT DETECTION

Times of

Day

Total

Input

Detected Success Rate

Morning 25 25 100%
Night 26 22 84.62%

TABLE VI

EXPERIMENTAL RESULT OF TRAFFIC LIGHT STATE

Times of

Day

Total

Input

Detected Success Rate

Morning 25 25 100%
Night 13 11 84.62%

Based on the experimental results, the proposed model

has difficulty detecting traffic lights at night due to the dim

environment, which causes the traffic light to be partially

absent. This has caused the proposed model not to be able to

recognize it as a traffic light due to the challenging lighting

environment. Fig. 10 shows an example of undetected traffic

lights due to the dim lighting, resulting in vague images.

Fig. 10 Vague Traffic Light at Night-Time

In fact, the instability of traffic light recognition at

nighttime has caused the traffic light state identification to
have a lower accuracy than in the morning. The traffic light

state identification is highly dependent on traffic light

detection because it is required to detect a traffic light before

being processed for traffic light state identification. As the

detection model may not be able to detect the traffic light all

the time, this has caused the traffic light state not to be

identified as no traffic light has been detected.

C. Red Light Violation

This section shows the result of the proposed red light

violation detection by feeding the model with real-life traffic

videos obtained from real-time CCTV footage. Fig. 11

shows the proposed model's capability in detecting red light

violators on the road. When the traffic light is in its red state,

a vehicle is not allowed to cross the traffic stop lane detected.

Otherwise, the corresponding vehicle will be immediately

classified as a red-light violator.

1524

Fig. 11 Red Light Violation Detection Result

During model evaluation, traffic video under the green

light state has also been fed into the model to assess the

model accuracy and reliability. As shown in Fig. 12, when

the current traffic light is in green state, red light violation

alert will not be triggered even when a vehicle has crossed

the stop line.

Fig. 12 Green Light Result

D. Overtaking Violation

This section shows the results of the overtaking detection

by feeding the model with real-life traffic videos obtained

from real-time CCTV footage. A traffic video without a

double line has been utilized to demonstrate the overtaking

scenario, assuming that the predefined lane is the double line

on the road. The result in Fig. 13 shows the proposed model

output in detecting illegal overtaking on the road. When a

vehicle crosses the indicated overtaking lane, that particular

vehicle will be immediately classified as overtaking by
turning its bounding box to red color and with a text on top

stating overtaking has been performed by that specific

vehicle as an alert message for the relevant authorities.

Despite the advancements in object detection and tracking

technologies, the complexities inherent in real-world traffic

environments present several challenges impacting the

system’s performance. One area for improvement of the

proposed system in red light violation detection is its high

dependency on the detected traffic stop line. It was found

that the proposed model could not detect the red-light

violator due to the incomplete detection of the stop line
when the vehicle is crossing the identified line in a red state.

The stop line was initially accurately detected, but the lane

detection became partially obscured when the vehicle

crossed the line. Based on the analysis, the reason for it not

being able to detect the stop line accurately may be due to

the occlusion by the vehicle. The vehicle's presence has

blocked the camera’s view, leading to the lane not being

fully detected at the part where occlusion occurs. To address

this issue, it is essential to position the camera strategically

to ensure that occlusion would not affect the line detection

result.

Fig. 13 Overtaking Violation Detection Result

In contrast, misclassification of overtaking could happen

on the vehicle near the edge of the camera frame when it did

not perform illegal overtaking. This could be due to the

proposed model's inability to effectively handle scale

variation and perspective changes. As the vehicle is moving

further away from the camera, the scale variation of the

vehicle and the changes in perspective may cause the

distance calculations to be skewed, leading to a wrong

calculation when determining if a car has been overtaken
illegally. The misclassification of overtaking detection could

be addressed by adjusting the position of the camera

viewpoint. In terms of technical enhancement, the possible

solution could be to enhance the preprocessing of the image

to normalize the perspective distortion using techniques like

Homography.

IV. CONCLUSION

In conclusion, the proposed system shows a promising
result in identifying traffic violators on the road. The system

works by first receiving an input video. Then, each frame of

the video is processed for road object detection including the

detection of vehicles and traffic lights. Detected vehicles are

provided with their unique identifier by Deep SORT tracker,

which is used to keep track of each vehicle as an individual.

On the other hand, detected traffic lights in each frame will

be processed for traffic lights state identification to identify

1525

whether the current state is red, yellow, or green. In terms of

automated lane detection which indicates the white line at

traffic lights and the double line for overtaking identification,

the lane is detected by combining both Canny Edge

Detection and Hough Transform techniques for the

automated lane detection in each frame. After these

operations, the system processes the frames to determine

whether any vehicle has violated the traffic rule by deciding

whether they have passed the detected lane when the traffic

light state is red or crossed the double line on the road.
However, the proposed model depends on the environmental

lighting conditions and the camera’s position to accurately

identify traffic violators. Furthermore, the proposed model

relies on the accuracy of object detection. A high object

detection accuracy would yield a better performance in

identifying red light violators and overtaking violators.

ACKNOWLEDGMENT

This research was funded by the TM R&D Fund

(MMUE/220023).

REFERENCES

[1] B. Mohamad, “Statistics on Causes of Death, Malaysia, 2023,”

Ministry of Economy Department of Statistics Malaysia.

[2] S. K. Ahmed et al., “Road traffic accidental injuries and deaths: A

neglected global health issue,” Health Science Reports, vol. 6, no. 5,

May 2023, doi: 10.1002/hsr2.1240.

[3] Y. Ren, “Intelligent Vehicle Violation Detection System Under

Human–Computer Interaction and Computer Vision,” International

Journal of Computational Intelligence Systems, vol. 17, no. 1, Feb.

2024, doi: 10.1007/s44196-024-00427-6.

[4] D. Zaheri and M. Abbas, “An Algorithm for Identifying Red Light

Runners from Radar Trajectory Data,” 2015 IEEE 18th International

Conference on Intelligent Transportation Systems, vol. 34, pp. 2683–

2687, Sep. 2015, doi: 10.1109/itsc.2015.431.

[5] A. Jahangiri, H. A. Rakha, and T. A. Dingus, “Adopting Machine

Learning Methods to Predict Red-light Running Violations,” 2015

IEEE 18th International Conference on Intelligent Transportation

Systems, vol. 2, pp. 650–655, Sep. 2015, doi: 10.1109/itsc.2015.112.

[6] A Alaydrus, W K Putra, Y Nugroho, Muhammad, and N Surantha,

“A review of traffic violation detection technology in reporting

mechanism,” IOP Conf Ser Earth Environ Sci, vol. 729, no. 1, pp. 1–

7, Apr. 2021, doi: 10.1088/1755-1315/729/1/012005.

[7] S. S. Wankhede and P. Bajaj, “Traffic Violation Detection Model

Using Soft Computing Tools,” 2021 6th International Conference for

Convergence in Technology (I2CT), pp. 1–5, Apr. 2021,

doi:10.1109/i2ct51068.2021.9417887.

[8] R. Ravish, S. Rangaswamy, and K. Char, “Intelligent Traffic

Violation Detection,” 2021 2nd Global Conference for Advancement

in Technology (GCAT), pp. 1–7, Oct. 2021,

doi:10.1109/gcat52182.2021.9587520.

[9] N. C. Mallela, R. Volety, S. P. R., and N. R. K., “Detection of the

triple riding and speed violation on two-wheelers using deep learning

algorithms,” Multimedia Tools and Applications, vol. 80, no. 6, pp.

8175–8187, Oct. 2020, doi: 10.1007/s11042-020-10126-x.

[10] K. Klubsuwan, W. Koodtalang, and S. Mungsing, “Traffic Violation

Detection Using Multiple Trajectories Evaluation of Vehicles,” 2013

4th International Conference on Intelligent Systems, Modelling and

Simulation, Jan. 2013, doi: 10.1109/isms.2013.143.

[11] M. M. Bachtiar, A. Rahman Mawardi, and A. R. Anom Besari,

“Vehicle Classification and Violation Detection on Traffic Light

Area using BLOB and Mean-Shift Tracking Method,” 2020

International Conference on Applied Science and Technology

(iCAST), pp. 94–98, Oct. 2020,

doi:10.1109/icast51016.2020.9557628.

[12] A. T. Bhat, Anupama, Akshatha, M. S. Rao, and D. G. Pai, “Traffic

violation detection in India using genetic algorithm,” Global

Transitions Proceedings, vol. 2, no. 2, pp. 309–314, Nov. 2021,

doi:10.1016/j.gltp.2021.08.056.

[13] J. C. de Goma, R. J. Bautista, M. A. J. Eviota, and V. P. Lopena,

“Detecting Red-Light Runners (RLR) and Speeding Violation

through Video Capture,” 2020 IEEE 7th International Conference on

Industrial Engineering and Applications (ICIEA), pp. 774–778, Apr.

2020, doi: 10.1109/iciea49774.2020.9102059.

[14] P.Srinivas Reddy, T. Nishwa, R. Shiva Kiran Reddy, Ch Sadviq, and

K. Rithvik, “Traffic Rules Violation Detection using Machine

Learning Techniques,” 2021 6th International Conference on

Communication and Electronics Systems (ICCES), pp. 1264–1268,

Aug. 2021.

[15] I. Bozcan and E. Kayacan, “Context-Dependent Anomaly Detection

for Low Altitude Traffic Surveillance,” 2021 IEEE International

Conference on Robotics and Automation (ICRA), pp. 224–230, May

2021, doi: 10.1109/icra48506.2021.9562043.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look

Once: Unified, Real-Time Object Detection,” 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 779–788,

Jun. 2016, doi: 10.1109/cvpr.2016.91.

[17] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime

tracking with a deep association metric,” 2017 IEEE International

Conference on Image Processing (ICIP), Sep. 2017,

doi:10.1109/icip.2017.8296962.

[18] S. Srivastava and S. Gupta, “Path Detection for Self-Driving Carts by

using Canny Edge Detection Algorithm,” 2021 9th International

Conference on Reliability, Infocom Technologies and Optimization

(Trends and Future Directions) (ICRITO), pp. 1–5, Sep. 2021,

doi:10.1109/icrito51393.2021.9596109.

[19] K. Zhao, Q. Han, C.-B. Zhang, J. Xu, and M.-M. Cheng, “Deep

Hough Transform for Semantic Line Detection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021,

doi:10.1109/tpami.2021.3077129..

[20] D. Bhatt et al., “CNN Variants for Computer Vision: History,

Architecture, Application, Challenges and Future Scope,” Electronics,

vol. 10, no. 20, p. 2470, Oct. 2021, doi: 10.3390/electronics10202470.

[21] T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using

YOLO: challenges, architectural successors, datasets and

applications,” Multimedia Tools and Applications, vol. 82, no. 6, pp.

9243–9275, Aug. 2022, doi: 10.1007/s11042-022-13644-y.

[22] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7:

Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time

Object Detectors,” 2023 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 7464–7475, Jun. 2023,

doi:10.1109/cvpr52729.2023.00721.

[23] D. Reis, J. Hong, J. Kupec, and A. Daoudi, “Real-Time Flying

Object Detection with YOLOv8,” pp. 1–10, May 2024.

[24] M. C. Raja, “Utilizing YOLO 8x Models, Deep Learning-Based

Head protector Detection for Construction Workers,” Jun. 2023,

doi:10.21203/rs.3.rs-3045767/v1.

[25] J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, “A

Comprehensive Review of YOLO Architectures in Computer Vision:

From YOLOv1 to YOLOv8 and YOLO-NAS,” Machine Learning

and Knowledge Extraction, vol. 5, no. 4, pp. 1680–1716, Nov. 2023,

doi: 10.3390/make5040083.

[26] M. Khodarahmi and V. Maihami, “A Review on Kalman Filter

Models,” Archives of Computational Methods in Engineering (2023),

vol. 30, pp. 727–747, Oct. 2022.

[27] K. Du and A. Bobkov, “An Overview of Object Detection and

Tracking Algorithms,” 15th International Conference “Intelligent

Systems,” vol. 33, no. 1, pp. 1–6, Jun. 2023.

[28] A. I. B. Parico and T. Ahamed, “Real Time Pear Fruit Detection and

Counting Using YOLOv4 Models and Deep SORT,” Sensors, vol. 21,

no. 14, p. 4803, Jul. 2021, doi: 10.3390/s21144803.

[29] N. D. Lynn, A. I. Sourav, and A. J. Santoso, “Implementation of

Real-Time Edge Detection Using Canny and Sobel Algorithms,” IOP

Conf. Series: Materials Science and Engineering, vol. 1096, pp. 1–8,

Mar. 2021.

[30] Q. Huang and J. Liu, “Practical limitations of lane detection

algorithm based on Hough transform in challenging scenarios,” Int J

Adv Robot Syst, vol. 18, no. 2, pp. 1–13, Mar. 2021.

[31] J. J. Ng, K. O. Michael Goh, and C. Tee, “Traffic Impact Assessment

System using Yolov5 and ByteTrack”, J. Inform. Web Eng., vol. 2,

no. 2, pp. 168–188, Sep. 2023.

[32] M. S. Irsyad, Z. Che Embi, and K. I. B. Ghauth, “Assessing the

Efficiency of Deep Learning Methods for Automated Vehicle

Registration Recognition for University Entrance”, J. Inform. Web

Eng., vol. 3, no. 2, pp. 57–69, Jun. 2024.

1526

[33] S. A. Lashari, M. M. Khan, A. Khan, S. Salahuddin, and M. N. . Ata,

“Comparative Evaluation of Machine Learning Models for Mobile

Phone Price Prediction: Assessing Accuracy, Robustness, and

Generalization Performance”, J. Inform. Web Eng., vol. 3, no. 3, pp.

147–163, Oct. 2024.

[34] S. T. Jimoh and S. S Al-Juboori, “Cyber-Securing Medical Devices

Using Machine Learning: A Case Study of Pacemaker”, J. Inform.

Web Eng., vol. 3, no. 3, pp. 271–289, Oct. 2024.

1527

