A Multi-Agent K-Means Algorithm for Improved Parallel Data Clustering

Mohammed Ahmed Jubair - Department of Computer Technical Engineering, College of Information Technology, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
Salama A. Mostafa - Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.
Aida Mustapha - Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 84600, Panchor, Johor, Malaysia.
Zirawani Baharum - Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750 Johor, Malaysia
Mohamad Aizi Salamat - Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.
Aldo Erianda - Department of Information Technology, Politeknik Negeri Padang, Sumatera Barat, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.30630/joiv.6.1-2.934


Due to the rapid increase in data volumes, clustering algorithms are now finding applications in a variety of fields. However, existing clustering techniques have been deemed unsuccessful in managing large data volumes due to the issues of accuracy and high computational cost. As a result, this work offers a parallel clustering technique based on a combination of the K-means and Multi-Agent System algorithms (MAS). The proposed technique is known as Multi-K-means (MK-means). The main goal is to keep the dataset intact while boosting the accuracy of the clustering procedure. The cluster centers of each partition are calculated, combined, and then clustered. The performance of the suggested method's statistical significance was confirmed using the five datasets that served as testing and assessment methods for the proposed algorithm's efficacy. In terms of performance, the proposed MK-means algorithm is compared to the Clustering-based Genetic Algorithm (CGA), the Adaptive Biogeography Clustering-based Genetic Algorithm (ABCGA), and standard K-means algorithms. The results show that the MK-means algorithm outperforms other algorithms because it works by activating agents separately for clustering processes while each agent considers a separate group of features.


K-means; decision-making; clustering; multi-agent system.

Full Text:



P. I. Dalatu, A. Fitrianto, and A. Mustapha, “Hybrid distance functions for K-Means clustering algorithms,†Stat. J. IAOS, vol. 33, no. 4, pp. 989–996, 2017.

M. A. Jubair, S. A. Mostafa, A. Mustapha, M. H. Hassan, M. A. Salamat, and M. S. Jawad, (2021, September). Exploring the Role of Multi-Agent Systems in Improving K-Means Clustering Method. In 2021 4th International Symposium on Agents, Multi-Agent Systems and Robotics (ISAMSR) (pp. 59-63). IEEE.

Y. Wang, M. Lees, W. Cai, S. Zhou, and M. Y. H. Low, “Cluster based partitioning for agent-based crowd simulations,†In Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 1047–1058, 2009.

P. Fränti and S. Sieranoja, “K-means properties on six clustering benchmark datasetsâ€, Applied Intelligence., vol. 48, no. 12, pp. 4743–4759, 2018.

P. Belsis, A. Koutoumanos, and C. Sgouropoulou, “PBURC: A patterns-based, unsupervised requirements clustering framework for distributed agile software development,†Requirements engineering, vol. 19, no. 2, pp. 213–225, 2014.

N. Kaur and S. Aggarwal, “Designing a New Hybrid K-Means Optimization Algorithm,†Int. J. of Adv. Res. in Com. Sci., vol. 8, no. 5, pp. 1567–1573, 2017.

M. A. Mahmoud, M. S. Ahmad, A. Ahmad, A. Mustapha, M. Z. M. Yusoff, and N. H. A. Hamid, “Building norms-adaptable agents from potential norms detection techniques (PNDT),†Int. J. of Int. Inf. Tech, 9(3), 38-60, 2013.

M. A., Mahmoud, M. S. Ahmad and, M. Z. M. Yusoff, (2016, March). A norm assimilation approach for multi-agent systems in heterogeneous communities. In Asian Conference on Intelligent Information and Database Systems (pp. 354-363). Springer, Berlin, Heidelberg.

S. A. Mostafa, M. S. Ahmad, M. Annamalai, A. Ahmad, S. S. Gunasekaran. “A conceptual model of layered adjustable autonomy,†In Advances in information systems and technologies 2013 (pp. 619-630). Springer, Berlin, Heidelberg.

S. A. Mostafa, S. S. Gunasekaran, M. S. Ahmad, A. Ahmad, M. Annamalai. and A. Mustapha, (2014, June). Defining tasks and actions complexity-levels via their deliberation intensity measures in the layered adjustable autonomy model. In 2014 International Conference on Intelligent Environments (pp. 52-55). IEEE.

M. A. Mahmoud, M. S. Ahmad, A. Ahmad, M. Z. M. Yusoff, A. Mustapha, and N. H. A. Hamid, “Obligation and Prohibition Norms Mining Algorithm for Normative Multi-agent Systems,†KES-AMSTA, pp. 115-124, 2013.

S. A. Mostafa, , M. S. Ahmad, , M. Annamalai, , A. Ahmad, , and S. S. Gunasekaran, “A dynamically adjustable autonomic agent framework,†In Advances in information systems and technologies, Springer, Berlin, Heidelberg, pp. 631-642, 2013.

S. A. Mostafa, M. S. Ahmad, A. Mustapha, and M. A. Mohammed, “Formulating layered adjustable autonomy for unmanned aerial vehicles,†International Journal of Intelligent Computing and Cybernetics, 2017.

S. A. Mostafa, A. Mustapha, A. A. Hazeem, S. H. Khaleefah, and M. A. Mohammed, “An agent-based inference engine for efficient and reliable automated car failure diagnosis assistance,†IEEE Access, 6, pp. 8322-8331, 2018.

S. A. Mostafa, M. S. Ahmad, A. Ahmad, M. Annamalai, and S. S. Gunasekaran, (2016, August). A Flexible Human-Agent Interaction model for supervised autonomous systems. In 2016 2nd International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR) (pp. 106-111). IEEE.

M. H. Hassan, , S. A. Mostafa, , H. Mahdin, , A. Mustapha, , A. A. Ramli, , M. H. Hassan, and M. A. Jubair, “Mobile ad-hoc network routing protocols of time-critical events for search and rescue missions,†Bulletin of Electrical Engineering and Informatics, 10(1), 192-199, 2021.

M. K. Abd Ghani, M. A. Mohammed, N. Arunkumar, S. A. Mostafa, D. A. Ibrahim, M. K. Abdullah, and M. A. Burhanuddin, “Decision-level fusion scheme for nasopharyngeal carcinoma identification using machine learning techniques,†Neural Computing and Applications, 32(3), 625-638, 2020.

S. A. Mostafa, M. Aida, M. A. Mohammed, M. S. Ahmad, and M. A. Mahmoud, “A fuzzy logic control in adjustable autonomy of a multi-agent system for an automated elderly movement monitoring application,†International journal of medical informatics 112, 173-184, 2018.

A. deep and A. Gupta, “A Novel Fuzzy-K Means based Support Vector Machine for Software Quality Prediction,†Int. J. Eng. Trends Technol., vol. 37, no. 2, pp. 80–89, 2016.

M. Mezghani, J. Kang, and F. Sèdes, “Using k-means for redundancy and inconsistency detection: Application to industrial requirements,†In International Conference on Applications of Natural Language to Information Systems, pp. 501–508, 2018.

D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algorithms,†Annals of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

P. Lin, Y. Wang, H. Qi, and Y. Hong, “Distributed Consensus-Based K-Means Algorithm in Switching Multi-Agent Networks,†Journal of Systems Science and Complexity, vol. 31, no. 5, pp. 1128–1145, 2018.

V. Bhatnagar, R. Majhi, and P. R. Jena, “Comparative Performance Evaluation of Clustering Algorithms for Grouping Manufacturing Firms,†Arabian Journal for Science and Engineering, vol. 43, no. 8, pp. 4071–4083, 2018.

N. Mesbahi, O. Kazar, S. Benharzallah, M. Zoubeidi, and S. Bourekkache, “Multi-agents approach for data Mining based K-Means for improving the decision process in the ERP systems,†International Journal of Decision Support System Technology (IJDSST), vol. 7, no. 2, pp. 1–14, 2015.

S. A. Mostafa, S. S. Gunasekaran, S. H. Khaleefah, A. Mustapha, M. A. Jubair, and M. H. Hassan, “A fuzzy case-based reasoning model for software requirements specifications quality assessment,†International Journal on Advanced Science Engineering and Information Technology, 2019.

A. K. Dubey, U. Gupta, and S. Jain, “Comparative study of K-means and fuzzy C-means algorithms on the breast cancer data,†International Journal on Advanced Science, Engineering and Information Technology, 8(1), 18-29, 2018.

D. Alexi, G. Francisco, C. Juan, V. Tom, and C. Chiara, “Water Quality Analysis in Mantaro River Peru, Before and After the Tailing’s Accident Using the Grey Clustering Method,†International Journal on Advanced Science, Engineering and Information Technology, vol. 11, no. 3, pp. 917-922, 2021.

M. F. A. Saputra, and T. Widiyaningtyas, A. P. Wibawa, “Illiteracy classification using K means-Naïve Bayes algorithm,†International Journal on Informatics Visualization (JOIV), 2(3), 153-158, 2018.

A. Satar, A. Mohamed, and A. M. Ali, “Data Mining Techniques for Pandemic Outbreak in Healthcare,†International Journal on Informatics Visualization (JOIV), 5(2), 162-169, 2021.

I. T. R. Yanto, R. Setiyowati, and N. Azizah, “A Framework of Mutual Information Kullback-Leibler Divergence based for Clustering Categorical Data,†International Journal on Informatics Visualization (JOIV), 5(1), 11-15, 2021.

S. Y. Tan, H. Arshad, and A. Abdullah, “An efficient and robust mobile augmented reality application,†International Journal on Advanced Science, Engineering and Information Technology, 8, 1672-1678, 2018.

S. Francesca, C. G. Carlo, F. D. N. Luca, and R. Marco, “Comparison of low-complexity algorithms for real-time QRS detection using standard ECG database,†International Journal on Advanced Science, Engineering and Information Technology, 8(2), 307, 2018.