High-Performance Computing on Agriculture: Analysis of Corn Leaf Disease
DOI: http://dx.doi.org/10.30630/joiv.6.2.793
Abstract
Keywords
Full Text:
PDFReferences
Z. Rozaki, "Chapter Five - Food security challenges and opportunities in indonesia post COVID-19," in Advances in Food Security and Sustainability, vol. 6, M. J. Cohen, Ed. Elsevier, 2021, pp. 119–168. doi: 10.1016/bs.af2s.2021.07.002.
N. Palacios-Rojas et al., "Mining maize diversity and improving its nutritional aspects within agro-food systems," Compr. Rev. Food Sci. Food Saf., vol. 19, no. 4, pp. 1809–1834, 2020, doi: 10.1111/1541-4337.12552.
D. S. Mueller et al., "Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2016 to 2019," Plant Health Prog., vol. 21, no. 4, pp. 238–247, Jan. 2020, doi: 10.1094/PHP-05-20-0038-RS.
R. Meng et al., "Development of Spectral Disease Indices for Southern Corn Rust Detection and Severity Classification," Remote Sens., vol. 12, no. 19, Art. no. 19, Jan. 2020, doi: 10.3390/rs12193233.
K. P. Panigrahi, A. K. Sahoo, and H. Das, "A CNN Approach for Corn Leaves Disease Detection to support Digital Agricultural System," in 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Jun. 2020, pp. 678–683. doi: 10.1109/ICOEI48184.2020.9142871.
L. I. U. Zhentao, Y. Yi, W. Dongchao, and X. I. E. Xiaoyao, "A CUDA-based parallel accelerating geographically weighted regression algorithm for big data," Bull. Surv. Mapp., vol. 0, no. 12, p. 1, Jan. 2021, doi: 10.13474/j.cnki.11-2246.2020.0379.
M. A. Elaziz, K. M. Hosny, A. Salah, M. M. Darwish, S. Lu, and A. T. Sahlol, "New machine learning method for image-based diagnosis of COVID-19," PLOS ONE, vol. 15, no. 6, p. e0235187, Jun. 2020, doi: 10.1371/journal.pone.0235187.
A. Gupta, D. Singh, and M. Kaur, "An efficient image encryption using non-dominated sorting genetic algorithm-III based 4-D chaotic maps," J. Ambient Intell. Humaniz. Comput., vol. 11, no. 3, pp. 1309–1324, Mar. 2020, doi: 10.1007/s12652-019-01493-x.
W. Gropp, E. Lusk, N. Doss, and A. Skjellum, "A high-performance, portable implementation of the MPI message passing interface standard," Parallel Comput., vol. 22, no. 6, pp. 789–828, Sep. 1996, doi: 10.1016/0167-8191(96)00024-5.
E. Gabriel et al., "Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation," in Recent Advances in Parallel Virtual Machine and Message Passing Interface, Berlin, Heidelberg, 2004, pp. 97–104. doi: 10.1007/978-3-540-30218-6_19.
R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca, and A. Lumsdaine, "Open MPI: A High-Performance, Heterogeneous MPI," in 2006 IEEE International Conference on Cluster Computing, Sep. 2006, pp. 1–9. doi: 10.1109/CLUSTR.2006.311904.
R. P, M. A, M. B, and G. K. S, "Lung Cancer Diagnosis and Treatment Using AI and Mobile Applications," Int. J. Interact. Mob. Technol. IJIM, vol. 14, no. 17, Art. no. 17, Oct. 2020, doi: 10.3991/ijim.v14i17.16607.
A. Rasyid et al., "Pothole Visual Detection using Machine Learning Method integrated with Internet of Thing Video Streaming Platform," in 2019 International Electronics Symposium (IES), Sep. 2019, pp. 672–675. doi: 10.1109/ELECSYM.2019.8901626.
K. Salhi, E. M. Jaara, and M. T. Alaoui, "Texture Image Segmentation Approach Based on Neural Networks," Int. J. Recent Contrib. Eng. Sci. IT IJES, vol. 6, no. 1, Art. no. 1, Mar. 2018, doi: 10.3991/ijes.v6i1.8166.
E. D. Fajrianti, E. Suryawati Ningrum, A. Risnumawan, and K. V. Madalena, "Tile Surface Segmentation Using Deep Convolutional Encoder-Decoder Architecture," in 2020 International Electronics Symposium (IES), Sep. 2020, pp. 364–370. doi: 10.1109/IES50839.2020.9231575.
A. N. Aneesh, L. Shine, R. Pradeep, and V. Sajith, "Real-time Traffic Light Detection and Recognition based on Deep RetinaNet for Self Driving Cars," in 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Jul. 2019, vol. 1, pp. 1554–1557. doi: 10.1109/ICICICT46008.2019.8993293.
R. F. Rahmat, T. Saputra, A. Hizriadi, T. Z. Lini, and M. K. M. Nasution, "Performance Test of Parallel Image Processing Using Open MPI on Raspberry PI Cluster Board," in 2019 3rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), Sep. 2019, pp. 32–35. doi: 10.1109/ELTICOM47379.2019.8943848.
J. López-Fandiño, D. B. Heras, F. Argüello, and M. Dalla Mura, “GPU Framework for Change Detection in Multitemporal Hyperspectral Images,†Int. J. Parallel Program., vol. 47, no. 2, pp. 272–292, Apr. 2019, doi: 10.1007/s10766-017-0547-5.
C. Shen, C. Chen, and J. Zhang, "Micro-architectural Cache Side-Channel Attacks and Countermeasures," in 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 2021, pp. 441–448.
J. C. Phillips et al., "Scalable molecular dynamics on CPU and GPU architectures with NAMD," J. Chem. Phys., vol. 153, no. 4, p. 044130, Jul. 2020, doi: 10.1063/5.0014475.
M. Liu, H. Li, M. Zhang, and T. Wang, "Graphics Processing Unitâ€Based Match and Locate: An Improved Match and Locate Method and Its Application," Seismol. Res. Lett., vol. 91, no. 2A, pp. 1019–1029, Jan. 2020, doi: 10.1785/0220190241.
G. M. J. Barca, J. L. Galvez-Vallejo, D. L. Poole, A. P. Rendell, and M. S. Gordon, "High-Performance, Graphics Processing Unit-Accelerated Fock Build Algorithm," J. Chem. Theory Comput., vol. 16, no. 12, pp. 7232–7238, Dec. 2020, doi:10.1021/acs.jctc.0c00768.
D. Rosenberg, P. D. Mininni, R. Reddy, and A. Pouquet, "GPU Parallelization of a Hybrid Pseudospectral Geophysical Turbulence Framework Using CUDA," Atmosphere, vol. 11, no. 2, Art. no. 2, Feb. 2020, doi: 10.3390/atmos11020178.
L. Clarke, I. Glendinning, and R. Hempel, "The MPI Message Passing Interface Standard," in Programming Environments for Massively Parallel Distributed Systems, Basel, 1994, pp. 213–218. doi: 10.1007/978-3-0348-8534-8_21.