High-Performance Computing on Agriculture: Analysis of Corn Leaf Disease

Evianita Dewi Fajrianti - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, Indonesia
Afis Asryullah Pratama - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, Indonesia
Jamal Abdul Nasyir - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, Indonesia
Alfandino Rasyid - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, Indonesia
Idris Winarno - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, Indonesia
Sritrusta Sukaridhoto - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.30630/joiv.6.2.793

Abstract


In some cases, image processing relies on a lot of training data to produce good and accurate models. It can be done to get an accurate model by augmenting the data, adjusting the darkness level of the image, and providing interference to the image. However, the more data that is trained, of course, requires high computational costs. One way that can be done is to add acceleration and parallel communication. This study discusses several scenarios of applying CUDA and MPI to train the 14.04 GB corn leaf disease dataset. The use of CUDA and MPI in the image pre-processing process. The results of the pre-processing image accuracy are 83.37%, while the precision value is 86.18%. In pre-processing using MPI, the load distribution process occurs on each slave, from loading the image to cutting the image to get the features carried out in parallel. The resulting features are combined with the master for linear regression. In the use of CPU and Hybrid without the addition of MPI there is a difference of 2 minutes. Meanwhile, in the usage between CPU MPI and GPU MPI there is a difference of 1 minute. This demonstrates that implementing accelerated and parallel communications can streamline the processing of data sets and save computational costs. In this case, the use of MPI and GPU positively influences the proposed system.

Keywords


Corn leaf disease; image analysis; GPU; MPI.

Full Text:

PDF

References


Z. Rozaki, "Chapter Five - Food security challenges and opportunities in indonesia post COVID-19," in Advances in Food Security and Sustainability, vol. 6, M. J. Cohen, Ed. Elsevier, 2021, pp. 119–168. doi: 10.1016/bs.af2s.2021.07.002.

N. Palacios-Rojas et al., "Mining maize diversity and improving its nutritional aspects within agro-food systems," Compr. Rev. Food Sci. Food Saf., vol. 19, no. 4, pp. 1809–1834, 2020, doi: 10.1111/1541-4337.12552.

D. S. Mueller et al., "Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2016 to 2019," Plant Health Prog., vol. 21, no. 4, pp. 238–247, Jan. 2020, doi: 10.1094/PHP-05-20-0038-RS.

R. Meng et al., "Development of Spectral Disease Indices for Southern Corn Rust Detection and Severity Classification," Remote Sens., vol. 12, no. 19, Art. no. 19, Jan. 2020, doi: 10.3390/rs12193233.

K. P. Panigrahi, A. K. Sahoo, and H. Das, "A CNN Approach for Corn Leaves Disease Detection to support Digital Agricultural System," in 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Jun. 2020, pp. 678–683. doi: 10.1109/ICOEI48184.2020.9142871.

L. I. U. Zhentao, Y. Yi, W. Dongchao, and X. I. E. Xiaoyao, "A CUDA-based parallel accelerating geographically weighted regression algorithm for big data," Bull. Surv. Mapp., vol. 0, no. 12, p. 1, Jan. 2021, doi: 10.13474/j.cnki.11-2246.2020.0379.

M. A. Elaziz, K. M. Hosny, A. Salah, M. M. Darwish, S. Lu, and A. T. Sahlol, "New machine learning method for image-based diagnosis of COVID-19," PLOS ONE, vol. 15, no. 6, p. e0235187, Jun. 2020, doi: 10.1371/journal.pone.0235187.

A. Gupta, D. Singh, and M. Kaur, "An efficient image encryption using non-dominated sorting genetic algorithm-III based 4-D chaotic maps," J. Ambient Intell. Humaniz. Comput., vol. 11, no. 3, pp. 1309–1324, Mar. 2020, doi: 10.1007/s12652-019-01493-x.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum, "A high-performance, portable implementation of the MPI message passing interface standard," Parallel Comput., vol. 22, no. 6, pp. 789–828, Sep. 1996, doi: 10.1016/0167-8191(96)00024-5.

E. Gabriel et al., "Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation," in Recent Advances in Parallel Virtual Machine and Message Passing Interface, Berlin, Heidelberg, 2004, pp. 97–104. doi: 10.1007/978-3-540-30218-6_19.

R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca, and A. Lumsdaine, "Open MPI: A High-Performance, Heterogeneous MPI," in 2006 IEEE International Conference on Cluster Computing, Sep. 2006, pp. 1–9. doi: 10.1109/CLUSTR.2006.311904.

R. P, M. A, M. B, and G. K. S, "Lung Cancer Diagnosis and Treatment Using AI and Mobile Applications," Int. J. Interact. Mob. Technol. IJIM, vol. 14, no. 17, Art. no. 17, Oct. 2020, doi: 10.3991/ijim.v14i17.16607.

A. Rasyid et al., "Pothole Visual Detection using Machine Learning Method integrated with Internet of Thing Video Streaming Platform," in 2019 International Electronics Symposium (IES), Sep. 2019, pp. 672–675. doi: 10.1109/ELECSYM.2019.8901626.

K. Salhi, E. M. Jaara, and M. T. Alaoui, "Texture Image Segmentation Approach Based on Neural Networks," Int. J. Recent Contrib. Eng. Sci. IT IJES, vol. 6, no. 1, Art. no. 1, Mar. 2018, doi: 10.3991/ijes.v6i1.8166.

E. D. Fajrianti, E. Suryawati Ningrum, A. Risnumawan, and K. V. Madalena, "Tile Surface Segmentation Using Deep Convolutional Encoder-Decoder Architecture," in 2020 International Electronics Symposium (IES), Sep. 2020, pp. 364–370. doi: 10.1109/IES50839.2020.9231575.

A. N. Aneesh, L. Shine, R. Pradeep, and V. Sajith, "Real-time Traffic Light Detection and Recognition based on Deep RetinaNet for Self Driving Cars," in 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Jul. 2019, vol. 1, pp. 1554–1557. doi: 10.1109/ICICICT46008.2019.8993293.

R. F. Rahmat, T. Saputra, A. Hizriadi, T. Z. Lini, and M. K. M. Nasution, "Performance Test of Parallel Image Processing Using Open MPI on Raspberry PI Cluster Board," in 2019 3rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), Sep. 2019, pp. 32–35. doi: 10.1109/ELTICOM47379.2019.8943848.

J. López-Fandiño, D. B. Heras, F. Argüello, and M. Dalla Mura, “GPU Framework for Change Detection in Multitemporal Hyperspectral Images,†Int. J. Parallel Program., vol. 47, no. 2, pp. 272–292, Apr. 2019, doi: 10.1007/s10766-017-0547-5.

C. Shen, C. Chen, and J. Zhang, "Micro-architectural Cache Side-Channel Attacks and Countermeasures," in 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 2021, pp. 441–448.

J. C. Phillips et al., "Scalable molecular dynamics on CPU and GPU architectures with NAMD," J. Chem. Phys., vol. 153, no. 4, p. 044130, Jul. 2020, doi: 10.1063/5.0014475.

M. Liu, H. Li, M. Zhang, and T. Wang, "Graphics Processing Unitâ€Based Match and Locate: An Improved Match and Locate Method and Its Application," Seismol. Res. Lett., vol. 91, no. 2A, pp. 1019–1029, Jan. 2020, doi: 10.1785/0220190241.

G. M. J. Barca, J. L. Galvez-Vallejo, D. L. Poole, A. P. Rendell, and M. S. Gordon, "High-Performance, Graphics Processing Unit-Accelerated Fock Build Algorithm," J. Chem. Theory Comput., vol. 16, no. 12, pp. 7232–7238, Dec. 2020, doi:10.1021/acs.jctc.0c00768.

D. Rosenberg, P. D. Mininni, R. Reddy, and A. Pouquet, "GPU Parallelization of a Hybrid Pseudospectral Geophysical Turbulence Framework Using CUDA," Atmosphere, vol. 11, no. 2, Art. no. 2, Feb. 2020, doi: 10.3390/atmos11020178.

L. Clarke, I. Glendinning, and R. Hempel, "The MPI Message Passing Interface Standard," in Programming Environments for Massively Parallel Distributed Systems, Basel, 1994, pp. 213–218. doi: 10.1007/978-3-0348-8534-8_21.