3D CNN based Alzheimer’s diseases classification using segmented Grey matter extracted from whole-brain MRI
DOI: http://dx.doi.org/10.30630/joiv.5.2.572
Abstract
Keywords
Full Text:
PDFReferences
J. L. Tanabe, D. Amend, N. Schuff, V. DiSclafani, F. Ezekiel, D. Norman, G. Fein, and M. W. Weiner, “Tissue segmentation of the brain in Alzheimer diseaseâ€, American Journal of Neuroradiology. 1997; 18(1):115-123.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networksâ€, Proc. NIPS, 2012; 1097–1105.
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutionsâ€, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2015; 1–9.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition†arXiv:1512.03385, 2015
Girshick, Ross, “Fast r-cnn,†In Proceedings of the IEEE international conference on computer vision, pp. 1440-1448. 2015.
National Research Centre for Dementia, Korea http://www.nrcd.re.kr/
J. Ashburner, “A fast diffeomorphic image registration algorithmâ€, NeuroImage, Volume 38, Issue 1, 2007, Pages 95-113, ISSN1053-8119, https://doi.org/10.1016/j.neuroimage.2007.07.007
Mazziotta J, Toga A, Evans A, et al, “A probabilistic atlas and reference system for the human brainâ€. International Consortium for Brain Mapping (ICBM), Philosophical Transactions of the Royal Society of London Series B. 2001; 356(1412):1293-1322. doi:10.1098/rstb.2001.0915.
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T. and Ronneberger, O., 2016, October. “3D U-Net: learning dense volumetric segmentation from sparse annotationâ€. In International conference on medical image computing and computer-assisted intervention (pp. 424-432). Springer, Cham.
Alzheimer's Disease Neuroimaging Initiative: ADNI www.loni.ucla.edu/ADNI.
Y. Zhang, S. Wang, G. Ji, and Z. Dong “Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging,†IEEJ Transactions on Electrical and Electronic Engineering. 2015; 10(1):116-117.
Z. Dong, Y. Zhang, F. Liu, Y. Duan, A. Kangarlu, B. S. Peterson, “Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the spread technique,†NMR in Biomedicine. 2014; 27(11):1325-1332
J. Ashburner, A fast diffeomorphic image registration algorithm, NeuroImage, Volume 38, Issue 1, 2007, Pages 95-113, ISSN1053-8119, https://doi.org/10.1016/j.neuroimage.2007.07.007
Khagi, B. and Kwon, G.R., 2020. 3D CNN design for the classification of Alzheimer’s disease using brain MRI and PET. IEEE Access.
Nagi, J., Ducatelle, F., Di Caro, G.A., CireÅŸan, D., Meier, U., Giusti, A., Nagi, F., Schmidhuber, J. and Gambardella, L.M., 2011, November. “Max-pooling convolutional neural networks for vision-based hand gesture recognitionâ€. In 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 342-347). IEEE.
Nair, V. and Hinton, G.E., 2010, January. “Rectified linear units improve restricted Boltzmann machinesâ€. In Icml. Bishop, C.M., 2006. Pattern recognition and machine learning. springer.
Payan, Adrien, and Giovanni Montana. "Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks." arXiv preprint arXiv:1502.02506 (2015).
Hosseini-Asl, Ehsan, Georgy Gimel'farb, and Ayman El-Baz. "Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network." arXiv preprint arXiv:1607.00556 (2016).
Oh, Kanghan, Young-Chul Chung, Ko Woon Kim, Woo-Sung Kim, and Il-Seok Oh. "Classification and Visualization of Alzheimer’s Disease using Volumetric Convolutional Neural Network and Transfer Learning." Scientific Reports 9, no. 1 (2019): 1-16.
Liu, M., Cheng, D., Wang, K., & Wang, Y. (2018). Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer’s Disease Diagnosis. Neuroinformatics, 16(3-4), 295–308. doi:10.1007/s12021-018-9370-4.
Yang G, Zhang Y, Yang J, et al. Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimed Tools Appl. 2015;75(23):15601-15617.
Jha, Debesh, Ji-In Kim, and Goo-Rak Kwon. "Diagnosis of Alzheimer’s disease using dual-tree complex wavelet transform, PCA, and feed-forward neural network." Journal of healthcare engineering 2017 (2017).
Khagi, Bijen, Gooâ€Rak Kwon, and Ramesh Lama. "Comparative analysis of Alzheimer's disease classification by CDR level using CNN, feature selection, and machineâ€learning techniques." International Journal of Imaging Systems and Technology 29, no. 3 (2019): 297-310.
Wang SH, Zhang Y, Li YJ, Jia WJ, Liu1 FY, Yang MM. Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization. Multimed Tools Appl. 2016;77:1-25
Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural network acoustic models." In Proc. icml, vol. 30, no. 1, p. 3. 2013.