Design of Personal Mobility Safety System Using AI
DOI: http://dx.doi.org/10.30630/joiv.5.2.558
Abstract
Full Text:
PDFReferences
https://biz.chosun.com/site/data/html_dir/2020/12/20/2020122000349.html
https://patents.google.com/patent/KR101385146B1/ko
D.E. Ahn, “Empirical analysis of the factors affecting the satisfaction and behavior of individuals using shared electric kickboards - A Case study of Seoulâ€, Graduate School of Gongju National University: Urban Transportation Engineering Department, Feb.2020.
G.B.Seo, S.D.Min, S.H.Lee, M.Hong, “Design and Implementation of Construction site Safety management System using Smart Helmet and BLE Beaconsâ€. Internet Information Society Journal, 20(3), 61-68., 2019.
I.S.Kim, H.M.OH, S.H.Kim., “Smart Helmet with Motorcycle Accident Notification Functionâ€. Korean Society of Mechanical Engineers Spring/Autumn Conference, 233-234. 2019
Wang C, Kim Y, Kim DG, Lee SH, Min SD. “Smart Helmet and Insole Sensors for Near Fall Incidence Recognition during Descent of Stairsâ€, Applied Sciences, 10(7):2262. https://doi.org/10.3390/app10072262, 2020
M.W.Yoo,S.K, D.H.Kim, D.S.Han., “Optimal Driver Area Detection for Driver Monitoring Systemâ€. Journal of the Korean Institute of Communication Sciences, 181-182. 2019.
Nuri Murat Arar and Jean-Philippe Thiran., “Robust Real-Time Multi-View Eye Trackingâ€. CoRR Arxiv preprint abs/arXiv:1711.05444, http://arxiv. org/abs/1711.05444., 2017.
S. Park, X. Zhang, A. Bulling, and O. Hilliges, “Learning to find eye region landmarks for remote gaze estimation in unconstrained settingsâ€, arXiv preprint arXiv:1805.04771, 2017.
Dong Hyun Yoo, Jae Heon Kim, Bang Rae Lee and Myoung Jin Chung, "Non-contact eye gaze tracking system by mapping of corneal reflections," Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, Washington, DC, USA, 2002, pp. 101-106, doi: 10.1109/AFGR.2002.1004139.
K. A. Mora and J.-M. Odobez, “Gaze Estimation in the 3D Space Using RGB-D Sensors,†IJCV, vol. 118, no. 2, pp. 194–216, jun 2016.
https://www.infrrd.ai/blog/image-processing-with-deep-learning-a-quick-start-guide/
MI Razzak, S Naz, A Zaib - Classification in BioApps, Deep learning for medical image processing: Overview, challenges and the future, Springer, 2018
L Jiao, J Zhao, A survey on the new generation of deep learning in image processing , IEEE Access, ieeexplore.ieee.org, 2019
Z. Zhao, L. Jiao, J. Zhao, J. Gu, and J. Zhao, ‘‘Discriminant deep belief network for high-resolution SAR image classification,’’ Pattern Recognit., vol. 61, pp. 686–701, Jan. 2017.
K. Zhang, W. Zuo, and L. Zhang, ‘‘FFDNet: Toward a fast and flexible solution for CNN based image denoising,’’ IEEE Trans. Image Process., vol. 27, no. 9, pp. 4608–4622, 2018.
Z. Huang, Z. Zhong, L. Sun, and Q. Huo, ‘‘Mask R-CNN with pyramid attention network for scene text detection,’’, (2018), arXiv:1811.09058. [Online]. Available: https://arxiv.org/abs/1811.09058
H. Ide and T. Kurita, ‘‘Improvement of learning for CNN with ReLU activation by sparse regularization,’’ in Proc. IEEE Int. Joint Conf. Neural Netw, vol. 1, no. 1, pp. 2684–2691., May 2017.
A. Shinya, N. D. Tung, T. Harada, and R. Thawonmas, ‘‘Object-specific style transfer based on feature map selection using CNNs,’’ in Proc. Nicogr. Int., Jun. 2017, vol. 1, no. 1, p. 88.
M. Koohzadi and N. M. Charkari, ‘‘Survey on deep learning methods in human action recognition,’’, IET Comput. Vis., vol. 11, no. 8, pp. 623–632, Dec. 2017.
Y. Shi, Y. Wei, D. Pan, W. Deng, H. Yao, T. Chen, G. Zhao, and M. Tong, and Q. Liu, ‘‘Student body gesture recognition based on Fisher broad learning system,’’ Int. J. Wavelets, Multiresolution Inf. Process., vol. 17, no. 1, Art. no. 1950001, 2019
Y.-B. Sheng and L. Zhou, ‘‘Distributed secure quantum machine learning’’, Sci. Bull., vol. 62, no. 14, pp. 1025–1029, 2017.
Z. Y. Ran and B. G. Hu, “Parameter identifiability in statistical machine learning: A review,â€, Neural Comput., vol. 29, no. 5, pp. 1151–1203, 2017.
R. Ren, T. Hung, and K. C. Tan, “A generic deep-learning-based approach for automated surface inspection,â€, IEEE Trans. Cybern., vol. 48, no. 3, pp. 929–940, Mar. 2018.
F. Xing, Y. Xie, H. Su, F. Liu, and L. Yang, ‘‘Deep learning in microscopy image analysis: A survey,’’, IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4550–4568, Oct. 2017
Q. Wang, X. Li, and D. Xu, ‘‘An improved deep learning framework brief net based on convolutional neural networks,’’ ICIC Express Lett., vol. 11, no. 8, pp. 1323–1330, 2017.
G. Hu, X. Peng, Y. Yang, T. M. Hospedales, and J. Verbeek, ‘‘Frankenstein: Learning deep face representations using small data,’’ IEEE Trans. Image Process., vol. 27, no. 1, pp. 293–303, Jan. 2018.
Y. Zhang, D. Ying, and C. Liu, ‘‘Situation, trends and prospects of deep learning applied to cyberspace security,’’ J. Comput. Res. Develop., vol. 55, no. 6, pp. 1117–1142, 2018.
F. Yang, H. Fan, P. Chu, E. Blasch, and H. Ling, ‘‘Clustered object detection in aerial images,’’ (2019), arXiv:1904.08008. [Online]. Available: https://arxiv.org/abs/1904.08008