A Data Pipeline Concept for Digitizing Services in Small and Medium-Sized Companies
DOI: http://dx.doi.org/10.62527/joiv.9.1.3796
Abstract
Keywords
Full Text:
PDFReferences
A. Katsinis, J. L. González, L. Di Bella, L. Odenthal, M. Hell, and B. Lozar, “Annual report on European SMEs 2023/2024,” 2024. [Online]. Available: http://bit.ly/3ZmI46o. [Accessed: May 22, 2024].
“Zalando: Leveraging tech to build the next generation of e-commerce.” [Online]. Available: https://corporate.zalando.com/en/technology/leveraging-tech-build-next-generation-e-commerce. [Accessed: May 22, 2024].
J. Densmore, Data Pipelines Pocket Reference. O’Reilly Media, 2021.
HP Enterprise Development LP, “What is on-premises data centers vs. cloud computing?” [Online]. Available: https://www.hpe.com/us/en/what-is/on-premises-vs-cloud.html. [Accessed: Feb. 15, 2024].
Fortra LLC, “On-premises vs. cloud: What’s the difference?” [Online]. Available: https://www.alertlogic.com/blog/on-premises-vs-cloud-whats-the-difference/. [Accessed: Feb. 15, 2024].
T. A. Majchrzak, T. Jansen, and H. Kuchen, “Efficiency evaluation of open source ETL tools,” Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 287–294, Mar. 2011, doi:10.1145/1982185.1982251.
C. Ballard et al., Data Modeling Techniques for Data Warehousing. IBM Corp., 1998. [Online]. Available: https://eddyswork.synthasite.com/resources/Data%20Modeling%20Tech%20For%20Data%20Warehouseing.pdf.
D. Narandžić, T. Lolić, D. Stefanović, and S. Ristić, “The challenge of an extraction-transformation-loading tool selection,” in Proc. Int. Conf. Syst., Autom. Control, Meas. (SAUM), 2018, pp. 42–45. [Online]. Available: https://bit.ly/49ly7uJ.
K. Guttridge et al., “Magic quadrant for integration platform as a service,” Gartner, 2024. [Online]. Available: https://www.gartner.com/doc/reprints?id=1-2GMN4JZA&ct=240214&st=sb. [Accessed: Mar. 8, 2024].
N. Yuhanna, A. Katz, C. Provost, and J. Barton, “The Forrester Wave: Cloud Data Pipelines Q4 2023,” Forrester, 2023. [Online]. Available: https://www.forrester.com/bold. [Accessed: Mar. 8, 2024].
T. Cerquitelli et al., “Manufacturing as a data-driven practice: Methodologies, technologies, and tools,” Proc. IEEE, vol. 109, no. 4, pp. 399–422, Apr. 2021, doi: 10.1109/JPROC.2021.3056006.
C. K. Dehury, P. Jakovits, S. N. Srirama, G. Giotis, and G. Garg, “TOSCAdata: Modeling data pipeline applications in TOSCA,” J. Syst. Softw., vol. 186, p. 111164, Apr. 2022, doi:10.1016/j.jss.2021.111164.
I. Poloskei, “Data engineering case-study in digitalized manufacturing,” in 2021 IEEE 19th World Symp. Appl. Mach. Intell. Inform. (SAMI), Jan. 2021, pp. 000491–000494, doi:10.1109/SAMI50585.2021.9378691.
P. J. Goh et al., “Conceptual design of cloud-based data pipeline for smart factory,” in Intell. Manuf. Mechatronics, 2022, pp. 29–39, doi:10.1007/978-981-16-8954-3_4.
M. Brady and J. Loonam, “Exploring the use of entity-relationship diagramming as a technique to support grounded theory inquiry,” Qual. Res. Organ. Manag.: Int. J., vol. 5, no. 3, pp. 224–237, Nov. 2010, doi: 10.1108/17465641011089854.
S. Sharma and D. Thakkalapelli, “Comparative analysis of data storage solutions for responsive big data applications,” Eduzone Int. Peer Rev. Multidiscip. J., vol. 12, no. 2, pp. 244–250, 2023.
Z. Nebić and V. Mahnić, “Data warehouse for an e-learning platform,” in Proc. 33rd Int. Conf. Inf. Technol. Interfaces (ITI), vol. II, 2010, pp. 415–420.
S. Ponnusamy, “Evolution of Enterprise Data Warehouse: Past Trends and Future Prospects,” International Journal of Computer Trends and Technology, vol. 71, no. 9, pp. 1–6, Sep. 2023, doi:10.14445/22312803/ijctt-v71i9p101.
E. M. Leonard, Design and Implementation of an Enterprise Data Warehouse. Marquette University, 2011.
D. Loshin, Business Intelligence: The Savvy Manager’s Guide. Newnes, 2012.
S. Manikandan, “Data transformation,” J. Pharmacol. Pharmacother., vol. 1, no. 2, pp. 126–127, Dec. 2010, doi: 10.4103/0976-500X.72373.
G. M. F. Ahmed, M. S. Islam, and M. M. R. Karim, “Comparison between Inmon and Kimball methodology for the purpose of designing, constructing and testing of a commercial BIDW project,” Int. J. Comput. Graph., vol. 8, no. 1, pp. 11–20, May 2017, doi: 10.14257/ijcg.2017.8.1.02.
“Data warehouse concepts: Kimball vs. Inmon approach,” Astera, 2024. [Online]. Available: https://www.astera.com/type/blog/data-warehouse-concepts/. [Accessed: May 21, 2024].
D. Singh and C. K. Reddy, “A survey on platforms for big data analytics,” J. Big Data, vol. 2, no. 1, Oct. 2014, doi: 10.1186/s40537-014-0008-6.
“What is a medallion architecture?” Databricks, 2024. [Online]. Available: https://www.databricks.com/glossary/medallion-architecture. [Accessed: May 22, 2024].
A. Kumar and A. Aggarwal, “Lightweight cryptographic primitives for mobile ad hoc networks,” in Recent Trends in Computer Networks and Distributed Systems Security, 2012, pp. 240–251, doi:10.1007/978-3-642-34135-9_25.
“Airbyte — Open-source data integration platform — ELT tool,” Airbyte, 2024. [Online]. Available: https://airbyte.com/. [Accessed: Mar. 7, 2024].
“How to choose a data transformation tool,” dbt Labs, 2024. [Online]. Available: https://www.getdbt.com/blog/data-transformation-tool-choosing/. [Accessed: May 22, 2024].
A. Göransson and O. Wändesjö, “Evaluating ClickHouse as a big data processing solution for IoT telemetry,” Lund University, 2022. [Online]. Available: https://lup.lub.lu.se/luur/download/. [Accessed: May 22, 2024].
“What is ClickHouse?” ClickHouse, 2024. [Online]. Available: https://clickhouse.com/docs/en/about-clickhouse. [Accessed: May 22, 2024].
“ClickHouse pricing,” ClickHouse, 2024. [Online]. Available: https://clickhouse.com/pricing. [Accessed: May 22, 2024].
A. R. Munappy, J. Bosch, and H. H. Olsson, “Data Pipeline Management in Practice: Challenges and Opportunities,” Product-Focused Software Process Improvement, pp. 168–184, 2020, doi:10.1007/978-3-030-64148-1_11.
M. Tory, L. Bartram, B. Fiore-Gartland, and A. Crisan, “Finding Their Data Voice: Practices and Challenges of Dashboard Users,” IEEE Computer Graphics and Applications, vol. 43, no. 1, pp. 22–36, Jan. 2023, doi: 10.1109/mcg.2021.3136545.
V. S. Smith, “Data Dashboard as Evaluation and Research Communication Tool,” New Directions for Evaluation, vol. 2013, no. 140, pp. 21–45, Dec. 2013, doi: 10.1002/ev.20072.
A. Dhaouadi, K. Bousselmi, M. M. Gammoudi, S. Monnet, and S. Hammoudi, “Data Warehousing Process Modeling from Classical Approaches to New Trends: Main Features and Comparisons,” Data, vol. 7, no. 8, p. 113, Aug. 2022, doi: 10.3390/data7080113.
“Testing data pipelines: Overview, challenges & importance,” lakeFS, 2024. [Online]. Available: https://lakefs.io/blog/acceptance-testing-for-data-pipelines/. [Accessed: May 21, 2024].