Music Recommendation Based on Facial Expression Using Deep Learning
DOI: http://dx.doi.org/10.62527/joiv.9.1.3794
Abstract
Keywords
Full Text:
PDFReferences
P. Agrahari, A. Singh Tanwar, B. Das, and P. Kunekar, “Musical therapy using facial expressions,” Int. Res. J. Eng. Technol., 2020.
N. Ahmad, “Impact of music on mood: Empirical investigation,” J. Educ. Pract., vol. 5, no. 21, 2015.
A. Jaya Mabel Rani, M. S. Nivetha, N. M. Jothi Swaroopan, and K. Hari Kumar, “Face emotion based music recommendation system using modified convolution neural network,” in 2023 IEEE Int. Conf. Res. Methodol. Knowl. Manag., Artif. Intell. Telecommun. Eng. (RMKMATE), 2023, doi: 10.1109/RMKMATE59243.2023.10368948.
A. Aziz and M. Fayyaz, “Comparison of content based and collaborative filtering in recommendation systems,” 2021.
M. Piórkowska and M. Wrobel, “Basic emotions,” in Encyclopedia of Personality and Individual Differences, 2017, doi: 10.1007/978-3-319-28099-8_495-1.
R. Zhang, S. Tu, and Z. Sun, “A hybrid music recommendation method based on music genres and collaborative filtering,” in 2022 IEEE Int. Conf. Dependable, Auton. Secure Comput., Pervasive Intell. Comput., Cloud Big Data Comput., Cyber Sci. Technol. Congr. (DASC/PiCom/CBDCom/CyberSciTech), 2022, pp. 1–6, doi:10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927924.
B. Yu, Q. Hu, L. Hao, and R. Li, “Music recommendation system based on collaborative filtering algorithm,” in 2023 IEEE Int. Conf. Sens., Electron. Comput. Eng. (ICSECE), 2023, pp. 308–313, doi:10.1109/ICSECE58870.2023.10263531.
A. Niyazov, E. Mikhailova, and O. Egorova, “Content-based music recommendation system,” in 2021 29th Conf. Open Innov. Assoc. (FRUCT), May 2021, pp. 274–279, doi:10.23919/FRUCT52173.2021.9435533.
M. Chemeque Rabel, “Content-based music recommendation system: A comparison of supervised machine learning models and music features,” M.S. thesis, School Electr. Eng. Comput. Sci. (EECS), KTH Royal Inst. Technol., Stockholm, Sweden, 2020. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288534.
A. Van Den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music recommendation,” in Adv. Neural Inf. Process. Syst., 2013, pp. 2643–2651.
B. Mahesh, “Machine learning algorithms—A review,” Int. J. Sci. Res., vol. 7, no. 3, pp. 1–6, 2018, doi: 10.21275/ART20203995.
J. Alzubi, A. Nayyar, and A. Kumar, “Machine learning from theory to algorithms: An overview,” J. Phys.: Conf. Ser., vol. 1142, no. 1, p. 012012, 2018, doi: 10.1088/1742-6596/1142/1/012012.
H. Meng, F. Yuan, Y. Wu, and T. Yan, “Facial expression recognition algorithm based on fusion of transformed multilevel features and improved weighted voting SVM,” Math. Probl. Eng., vol. 2021, pp. 1–12, 2021, doi: 10.1155/2021/6639598.
P. Chandrakala, B. S. Assistant Professor, and M. A. Kumar, “Real time face detection and face recognition using OpenCV and Python,” J. Eng. Sci., vol. 13, 2022.
A. Mishra, H. Chandrasekaran, B. Dhamecha, and R. Bhise, “Real time face detection,” Asian J. Res. Soc. Sci. Humanit., 2020.
M. Sakthimohan, G. Elizabeth Rani, M. Navaneethakrishnan, K. Janani, V. Nithva, and R. Pranav, “Detection and recognition of face using deep learning,” in 2023 Int. Conf. Intell. Syst. Commun., IoT Secur. (ICISCoIS), 2023, pp. 72–76, doi:10.1109/ICISCoIS56541.2023.10100435.
S. Begaj, A. O. Topal, and M. Ali, “Emotion recognition based on facial expressions using convolutional neural network (CNN),” in 2020 Int. Conf. Comput., Netw., Telecommun. Eng. Sci. Appl. (CoNTESA), Dec. 2020, pp. 58–63, doi: 10.1109/CoNTESA50436.2020.9302866.
R. Ravi, S. V. Yadhukrishna, and R. Prithviraj, “A face expression recognition using CNN LBP,” in 2020 4th Int. Conf. Comput. Methodol. Commun. (ICCMC), 2020, pp. 684–689, doi:10.1109/ICCMC48092.2020.ICCMC-000127.
G. M. Foody and A. Mathur, “A relative evaluation of multiclass image classification by support vector machines,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 6, pp. 1335–1343, Jun. 2004, doi:10.1109/TGRS.2004.827257.
R. K. Mishra, G. Y. S. Reddy, and H. Pathak, “The understanding of deep learning: A comprehensive review,” Math. Probl. Eng., vol. 2021, pp. 1–16, 2021, doi: 10.1155/2021/5548884.
A. Mathew, P. Amudha, and S. Sivakumari, “Deep learning techniques: An overview,” in Adv. Intell. Syst. Comput., vol. 1141, 2021, pp. 599–608, doi: 10.1007/978-981-15-3383-9_54.
S. I. Mohammad, N. S. G. Abdelrasheed, A. S. Minasova, A. Vasudevan, and N. Shavkatov, “A gauge into emotional intelligence enhancement in CALL and the effects on oral skills, personal best goals, and self-efficacy among EFL learners,” Comput.-Assist. Lang. Learn. Electron. J., vol. 25, no. 4, pp. 552–577, 2024.