Understanding Search Behavior in the Simulated Kalman Filter Algorithm
DOI: http://dx.doi.org/10.62527/joiv.9.1.3538
Abstract
Keywords
Full Text:
PDFReferences
D. Brahim, M. Kobayashi, M. E. A. Elaissaoui Elmeliani, M. Al Ali, and T. Khatir, “Metaheuristic Optimization Algorithms: an overview,” HCMCOU Journal of Science – Advances in Computational Structures, Feb. 2024, doi: 10.46223/hcmcoujs.acs.en.14.1.47.2024.
F. S. Gharehchopogh, M. Namazi, L. Ebrahimi, and B. Abdollahzadeh, “Advances in Sparrow Search Algorithm: A Comprehensive Survey.,” Archives of computational methods in engineering : state of the art reviews, vol. 30, no. 1, pp. 427–455, Aug. 2022, doi: 10.1007/s11831-022-09804-w.
N. Khanduja and B. Bhushan, “Recent Advances and Application of Metaheuristic Algorithms: A Survey (2014–2020),” springer singapore, 2020, pp. 207–228. doi: 10.1007/978-981-15-7571-6_10.
H. Mohammadzadeh and F. S. Gharehchopogh, “A multi‐agent system based for solving high‐dimensional optimization problems: A case study on email spam detection,” International Journal of Communication Systems, vol. 34, no. 3, Nov. 2020, doi: 10.1002/dac.4670.
N. Khanduja and B. Bhushan, “Recent Advances and Application of Metaheuristic Algorithms: A Survey (2014–2020),” springer singapore, 2020, pp. 207–228. doi: 10.1007/978-981-15-7571-6_10.
S. M Almufti, A. Ahmad Shaban, R. Ismael Ali, J. A Dela Fuente, and Z. Arif Ali, “Overview of Metaheuristic Algorithms,” Polaris Global Journal of Scholarly Research and Trends, vol. 2, no. 2, pp. 10–32, Apr. 2023, doi: 10.58429/pgjsrt.v2n2a144.
A. P. Piotrowski, M. J. Napiorkowski, J. J. Napiorkowski, and P. M. Rowinski, “Swarm Intelligence and Evolutionary Algorithms: Performance versus speed,” Inf. Sci. (Ny)., vol. 384, pp. 34–85, 2017, doi: 10.1016/j.ins.2016.12.028.
O. O. Akinola, A. E. Ezugwu, J. O. Agushaka, L. Abualigah, and R. A. Zitar, “Multiclass feature selection with metaheuristic optimization algorithms: a review.,” Neural Computing and Applications, vol. 34, no. 22, pp. 19751–19790, Aug. 2022, doi: 10.1007/s00521-022-07705-4.
H. T. Sadeeq and A. M. Abdulazeez, “Metaheuristics: A Review of Algorithms,” Int. J. online Biomed. Eng., vol. 19, no. 9, pp. 142–164, 2023, doi: 10.3991/ijoe.v19i09.39683.
K. Rajwar, K. Deep, and S. Das, An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges, vol. 56, no. 11. Springer Netherlands, 2023, doi: 10.1007/s10462-023-10470-y.
N. H. Abdul Aziz, Z. Ibrahim, S. Razali, and N. A. Ab Aziz, “Estimation-based Metaheuristics : A New Branch of Computational Intelligence,” Natl. Conf. Postgrad. Res. 2016(NCON-PGR), pp. 469–476, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:55400183
R. Toscano and P. Lyonnet, “Heuristic kalman algorithm for solving optimization problems,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 39, no. 5, pp. 1231–1244, 2009, doi: 10.1109/TSMCB.2009.2014777.
Z. Ibrahim, N. H. Abdul Aziz, N. A. Ab. Aziz, S. Razali, and M. S. Mohamad, “Simulated Kalman Filter: A novel estimation-based metaheuristic optimization algorithm,” Adv. Sci. Lett., vol. 22, no. 10, pp. 2941–2946, 2016, doi: 10.1166/asl.2016.7083.
N. H. Abdul Aziz, Z. Ibrahim, N. A. Ab Aziz, M. S. Mohamad, and J. Watada, “Single-solution Simulated Kalman Filter algorithm for global optimisation problems,” Sadhana - Acad. Proc. Eng. Sci., vol. 43, no. 7, 2018, doi: 10.1007/s12046-018-0888-9.
T. Ab Rahman, Z. Ibrahim, N. A. Ab Aziz, S. Zhao, and N. H. Abdul Aziz, “Single-Agent Finite Impulse Response Optimizer for Numerical Optimization Problems,” IEEE Access, vol. 6, pp. 9358–9374, 2018, doi: 10.1109/ACCESS.2017.2777894.
T. Ab Rahman, N. A. Ab Aziz, Z. Ibrahim, N. H. A. Aziz, M. I. Shapiai, and J. S. Suri, “Multi-Agent Finite Impulse Response Optimizer for Numerical Optimization Problems,” ResearchSquare. 2020, doi: 10.21203/rs.3.rs-129794.
Z. Musa, Z. Ibrahim, M. I. Shapiai, and Y. Tsuboi, “Cubature Kalman Optimizer: A Novel Metaheuristic Algorithm for Solving Numerical Optimization Problems,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 33, no. 1, pp. 333–355, 2023, doi: 10.37934/araset.33.1.333355.
Z. Musa, Z. Ibrahim, and M. I. Shapiai, “Multi-Agent Cubature Kalman Optimizer: a novel metaheuristic algorithm for solving numerical optimization problems,” Int. J. Cogn. Comput. Eng., vol. 5, no. Mar. 2023, pp. 140–152, 2024, doi: 10.1016/j.ijcce.2024.03.003.
B. Morales-Castañeda, E. Cuevas, A. Rodríguez, F. Fausto, and D. Zaldívar, “A better balance in metaheuristic algorithms: Does it exist?,” Swarm and Evolutionary Computation, vol. 54, p. 100671, Mar. 2020, doi: 10.1016/j.swevo.2020.100671.
C. Zhang et al., “An adaptive balance optimization algorithm and its engineering application,” Advanced Engineering Informatics, vol. 55, p. 101908, Jan. 2023, doi: 10.1016/j.aei.2023.101908.
R. García-Ródenas, L. J. Linares, and J. A. López-Gómez, “A Memetic Chaotic Gravitational Search Algorithm for unconstrained global optimization problems,” Applied Soft Computing, vol. 79, pp. 14–29, Mar. 2019, doi: 10.1016/j.asoc.2019.03.011.
J. Jiang, X. Yang, X. Meng, and K. Li, “Enhance chaotic gravitational search algorithm (CGSA) by balance adjustment mechanism and sine randomness function for continuous optimization problems,” Physica A: Statistical Mechanics and its Applications, vol. 537, p. 122621, Sep. 2019, doi: 10.1016/j.physa.2019.122621.
Z. Tang, S. Tao, K. Wang, Y. Todo, J. Shi, and S. Gao, “A Novel Optimization Algorithm Inherited From Gravitational and Spherical Search Dynamics,” Dec. 2020, pp. 91–96. doi: 10.1109/iscid51228.2020.00027.
L. Hayward and A. Engelbrecht, “How to Tell a Fish from a Bee: Constructing Meta-Heuristic Search Behavior Characteristics,” GECCO 2023 Companion - Proc. 2023 Genet. Evol. Comput. Conf. Companion, pp. 1562–1569, 2023, doi: 10.1145/3583133.3596338.
H. Hendy, M. I. Irawan, I. Mukhlash, and S. Setumin, “A Bibliometric Analysis of Metaheuristic Research and Its Applications,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 9, no. 1, pp. 1–17, 2023, doi: 10.26594/register.v9i1.2675.
M. A. Lones, “Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms,” SN Comput. Sci., vol. 1, no. 1, pp. 1–24, 2020, doi: 10.1007/s42979-019-0050-8.
Z. Ibrahim et al., “A Kalman filter approach for solving unimodal optimization problems,” ICIC Express Lett., vol. 9, no. 12, pp. 3415–3422, 2015.
N. H. Abdul Aziz et al., “Simulated Kalman Filter with Randomized Q and R Parameters,” Proc. Int. Conf. Artif. Life Robot., vol. 22, no. Icarob 2017, pp. 711–714, 2017, doi: 10.5954/icarob.2017.gs11-6.
N. H. Abdul Aziz, Z. Ibrahim, S. Razali, T. Adeola Bakare, and N. A. Ab Aziz, “How Important the Error Covariance in Simulated Kalman Filter ?,” Natl. Conf. Postgrad. Res. 2016, pp. 315–320, 2016.
N. H. Abdul Aziz, Z. Ibrahim, N. A. Ab. Aziz, and S. Razali, “Parameter-Less Simulated Kalman Filter,” Int. J. Softw. Eng. Comput. Syst., vol. 3, no. February, pp. 129–137, 2017, doi: 10.15282/ijsecs.3.2017.9.0031.
J. Kudela and R. Matousek, “New Benchmark Functions for Single-Objective Optimization Based on a Zigzag Pattern,” IEEE Access, vol. 10, pp. 8262–8278, Jan. 2022, doi: 10.1109/access.2022.3144067.
I. R. Meneghini, M. A. Alves, A. Gaspar-Cunha, and F. G. Guimarães, “Scalable and customizable benchmark problems for many-objective optimization,” Applied Soft Computing, vol. 90, p. 106139, Feb. 2020, doi: 10.1016/j.asoc.2020.106139.
I. R. Meneghini, M. A. Alves, A. Gaspar-Cunha, and F. G. Guimarães, “Scalable and customizable benchmark problems for many-objective optimization,” Applied Soft Computing, vol. 90, p. 106139, Feb. 2020, doi: 10.1016/j.asoc.2020.106139.
M. Jamil and X. S. Yang, “A literature survey of benchmark functions for global optimisation problems,” Int. J. Math. Model. Numer. Optim., vol. 4, no. 2, pp. 150–194, 2013, doi: 10.1504/IJMMNO.2013.055204.
A. Bolufe-Rohler and S. Chen, “A Multi-Population Exploration-only Exploitation-only Hybrid on CEC-2020 Single Objective Bound Constrained Problems,” Jul. 2020. doi: 10.1109/cec48606.2020.9185530.
N. H. Abdul Aziz et al., “A Tutorial on Population-based Simulated Kalman Filter,” Mekatronika, vol. 1, no. 2, pp. 23–32, 2019, doi: 10.15282/mekatronika.v1i2.4895.
B. Crawford et al., “Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics,” Mathematics, vol. 9, no. 16, p. 1839, Aug. 2021, doi: 10.3390/math9161839.
S. M. Ebrahimi, S. Hasanzadeh, and S. Khatibi, “Parameter identification of fuel cell using Repairable Grey Wolf Optimization algorithm,” Applied Soft Computing, vol. 147, p. 110791, Sep. 2023, doi: 10.1016/j.asoc.2023.110791.
N. Hidayati et al., “A brief review of simulated Kalman Filter Algorithm – variants and applications,” F1000Research 2021 101081, vol. 10, p. 1081, Oct. 2021, doi: 10.12688/f1000research.73242.1.
K. Lazarus et al., “An opposition-based simulated kalman filter algorithm for adaptive beamforming,” Proc. 2017 IEEE Int. Conf. Appl. Syst. Innov. Appl. Syst. Innov. Mod. Technol. ICASI 2017, no. 4, pp. 91–94, 2017, doi: 10.1109/ICASI.2017.7988354.
B. Muhammad, Z. Ibrahim, M. I. Shapiai, M. S. Mohamad, K. Z. M. Azmi, and M. F. M. Jusof, “Oppositional learning prediction operator with jumping rate for simulated kalman filter,” 2019 Int. Conf. Comput. Inf. Sci. ICCIS 2019, pp. 0–5, 2019, doi: 10.1109/ICCISci.2019.8716382.
Z. Ibrahim et al., “An oppositional learning prediction operator for simulated kalman filter,” in Proceedings - 3rd International Conference on Computational Intelligence and Applications, ICCIA 2018, 2018, pp. 195–199, doi: 10.1109/ICCIA.2018.00044.
B. Muhammad et al., “A new hybrid simulated Kalman filter and particle swarm optimization for continuous numerical optimization problems,” ARPN J. Eng. Appl. Sci., vol. 10, no. 22, pp. 17171–17176, 2015. [Online]. Available: www.arpnjournals.com
B. Muhammad, Z. Ibrahim, M. F. Mat Jusof, N. A. Ab Aziz, N. H. Abd Aziz, and N. Mokhtar, “A Hybrid Simulated Kalman Filter - Gravitational Search Algorithm (SKF-GSA),” Proc. Int. Conf. Artif. Life Robot., vol. 22, no. 1, pp. 707–710, 2017, doi: 10.5954/icarob.2017.gs11-5.
B. Muhammad et al., “Four Different Methods to Hybrid Simulated Kalman Filter ( SKF ) with Particle Swarm Optimization ( PSO ),” in The National Conference for Postgraduate Research 2016, 2016, pp. 843–853.
B. Muhammad et al., “Four Different Methods to Hybrid Simulated Kalman Filter ( SKF ) with Gravitational Search Algorithm ( GSA ),” in The National Conference for Postgraduate Research 2016, 2016, pp. 854–864.
B. Muhammad et al., “Performance Evaluation of Hybrid SKF Algorithms : Hybrid SKF-PSO and Hybrid SKF-GSA,” Natl. Conf. Postgrad. Res. 2016, pp. 865–874, 2016.
M. F. Mat Jusof et al., “A Kalman-Filter-Based Sine-Cosine Algorithm,” in 2018 IEEE Internaltional Conference on Automatic Control and Intelligent Systems (I2CACIS 2018), 2018, pp. 137–141, doi: 10.1109/I2CACIS.2018.8603711.
K. Z. Mohd Azmi, Z. Ibrahim, D. Pebrianti, M. F. Mat Jusof, N. H. Abdul Aziz, and N. A. Ab.Aziz, “Enhancing simulated Kalman filter algorithm using current optimum opposition-based learning,” J. Intell. Manuf. Mechatronics, vol. 01, no. 01, pp. 1–13, 2019, doi: 10.15282/mekatronika.v1i1.157.
N. Ahmad Zamri, N. A. Nor, T. Bhuvaneswari, N. H. Abdul Aziz, and A. K. Ghazali, “Feature Selection of Microarray Data Using Simulated Kalman Filter with Mutation,” Processes, vol. 11, no. 8, 2023, doi: 10.3390/pr11082409.
M. F. Mat Jusof et al., Simulated Kalman Filter Algorithm with Improved Accuracy, vol. 538. Springer Singapore, 2019.
N. A. Ab. Aziz, Z. Ibrahim, N. H. A. Aziz, and T. Ab. Rahman, “Asynchronous simulated Kalman filter optimization algorithm,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 44–49, 2018, doi: 10.14419/ijet.v7i4.27.22478.
N. A. A. Aziz, Z. Ibrahim, N. H. A. Aziz, M. Mubin, N. Mokhtar, and M. I. Shapiai, “A fitness-based adaptive synchronous-asynchronous switching in simulated kalman filter optimizer,” 2019, doi: 10.1109/ICCISci.2019.8716393.
N. A. Ab. Aziz, T. Ab Rahman, and N. H. Abdul Aziz, “Fitness-evaluated Adaptive Switching Simulated Kalman Filter Algorithm with Randomness,” Mekatronika, vol. 1, no. 2, pp. 45–65, 2019, doi: 10.15282/mekatronika.v1i2.4986.
N. A. A. Aziz et al., A Diversity-Based Adaptive Synchronous-Asynchronous Switching Simulated Kalman Filter Optimizer, vol. 632. 2020.
M. Sharma and P. Kaur, “A Comprehensive Analysis of Nature-Inspired Meta-Heuristic Techniques for Feature Selection Problem,” Archives of Computational Methods in Engineering, vol. 28, no. 3, pp. 1103–1127, Feb. 2020, doi: 10.1007/s11831-020-09412-6.
R. A. Briers and P. H. Warren, “Population turnover and habitat dynamics in Notonecta (Hemiptera: Notonectidae) metapopulations.,” Oecologia, vol. 123, no. 2, pp. 216–222, May 2000, doi: 10.1007/s004420051008.
A. Kaveh and H. Yousefpour, “Comparison of Three Chaotic Meta-heuristic Algorithms for the Optimal Design of Truss Structures with Frequency Constraints,” Periodica Polytechnica Civil Engineering, Jul. 2023, doi: 10.3311/ppci.22594.
Y. Zhang, Z. Lei, Z. Tang, Y. Todo, Z. Zhang, and S. Gao, “A Spherical Search-based Archive Update Mechanism for Self-adaptive Differential Evolution,” Mar. 2020, pp. 173–178. doi: 10.1109/icaiis49377.2020.9194937.
Q. Li, W. Gao, and Y. Bai, “Improved Initialization Method for Metaheuristic Algorithms: A Novel Search Space View,” IEEE Access, vol. 9, pp. 121366–121384, Jan. 2021, doi: 10.1109/access.2021.3073480.