Model-Based Resource Utilization and Performance Risk Prediction using Machine Learning Techniques
DOI: http://dx.doi.org/10.30630/joiv.1.3.35
Abstract
Keywords
Full Text:
PDFReferences
V. Cortellessa, K. Goseva-popstojanova, S. S. Member, K. Appukkutty, A. R. Guedem, A. Hassan, S. S. Member, R. Elnaggar, W. Abdelmoez, S. S. Member, H. H. Ammar, and I. C. Society, “Model-Based Performance Risk Analysis,†vol. 31, no. 1, pp. 3–20, 2005.
A. Radhakrishnan and W. Virginia, “Tool Support for Software Performance Risk Assessment Tool Support for Software Performance Risk Assessment,†2007.
H. A. Moniem, “A framework for Performance Prediction of Service-Oriented Architecture,†vol. 4, no. 11, pp. 865–870, 2015.
B. Islam, “Predict Software Reliability by Support Vector Machine,†vol. 2, no. 4, pp. 46–52, 2013.
B. Rabta, A. Alp, and G. Reiner, “Queueing Networks Modeling Software for Manufacturing", Rapid Modelling for Increasing Competitiveness pp 15-23, DOI: 10.1007/978-1-84882-748-6_2
Z. Omary and F. Mtenzi, “Machine Learning Approach to Identifying the Dataset Threshold for the Performance Estimators in Supervised Learning,†Int. J., vol. 3, no. 3, pp. 314–325, 2010.
Z. Omary and F. Mtenzi, “Dataset threshold for the performance estimators in supervised machine learning experiments,†2009 Int. Conf. Internet Technol. Secur. Trans., vol. 3, no. 3, pp. 314–325, 2009.
Q. Zhang, L. Cherkasova, and E. Smirni, “A Regression-Based Analytic Model for Dynamic Resource Provisioning of Multi-Tier Applications,†2007.
R. Mohanty, “Classification of Web Services Using Bayesian Network,†J. Softw. Eng. Appl., vol. 05, no. 04, pp. 291–296, 2012.
N. Based, “Neighbor Based Algorithm for Multi-label Classification,†pp. 718–721, 2004.
S. Abe, “Fuzzy support vector machines for multilabel classification,†Pattern Recognit., vol. 48, no. 6, pp. 2110–2117, 2015.
A. Ganapathi, “Predicting and optimizing system utilization and performance via statistical machine learning,†UC Berkeley, no. UCB/EECS-2009–181, p. 97, 2009.
K. Singh, E. .Ipek, S. a McKee, B. R. de Supinski, M. Schulz, and R. Caruana, “Predicting parallel application performance via machine learning approaches: Research Articles,†Concurr. Comput. Pr. Exper., vol. 19, no. 17, pp. 2219–2235, 2007.
E. Ipek, B. R. De Supinski, M. Schulz, E. Ipek, B. R. de Supinski, B. R. de Supinski, M. Schulz, M. Schulz, S. A. McKee, and S. A. McKee, “An Approach to Performance Prediction for Parallel Applications,†Euro-Par 2005 Parallel Process., pp. 196 – 205, 2005.
A. Brunnert and H. Krcmar, “Continuous performance evaluation and capacity planning using resource profiles for enterprise applications,†J. Syst. Softw., 2015.
S. Balsamo, R. Mamprin, and M. Marzolla, “Performance evaluation of software architectures with queuing network models’,†Work. Softw. Perform., 1998.