Solution for Public Smart Dispenser Using Digital Payment Based on the Fingerprint Minutiae Algorithm

Jumadi Parenreng - Universitas Negeri Makassar
Nur Fadiah - Universitas Negeri Makassar
Irmawati Irmawati - Universitas Patria Artha
Syahrul Syahrul - Universitas Negeri Makassar
Abdul Wahid - Universitas Negeri Makassar
M.Syahid Wahid - Universitas Negeri Makassar


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3-2.3309

Abstract


Technological advancements have significantly focused on secure and efficient digital payments. In the context of Public Smart Dispensers (PSDs), using authentication and verification in payment transactions is crucial to address security concerns, enhance transaction efficiency, and provide a better user experience. This study employs minutiae algorithms for the fingerprint identification and verification process. Fingerprint identification utilizes the crossing number method, while fingerprint verification uses a validation score. If the validation score exceeds the threshold of >80, fingerprint verification is considered successful; conversely, verification is deemed unsuccessful if the validation score is <80. Through testing, biometrics as a payment method was conducted 100 times, resulting in an accuracy rate of 94% with an identification response time of approximately two or three seconds. The research findings demonstrate the practicality of implementing fingerprint biometric payment methods with minutiae algorithms on Public Smart Dispenser payment systems in the field of digital payments and technology. This enables fast and efficient transactions, significantly reducing the risk of fund misuse. Consequently, users can easily access water through Public Smart Dispensers, underscoring the real-world applicability and relevance of this solution. Implementing this technology can enhance user comfort and security while expediting the transaction process, which is crucial for public use. Therefore, this research makes a significant contribution to the advancement of fingerprint-based payment technology on public smart dispensers.


Keywords


Public Smart Dispenser; Biometric; Transaction; Minutiae

Full Text:

PDF

References


Vandana and N. Kaur, “A Study of Biometric Identification and Verification System,” in 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2021, pp. 60–64. doi: 10.1109/ICACITE51222.2021.9404735.

R. A. Kasri, B. S. Indrastomo, N. D. Hendranastiti, and M. B. Prasetyo, “Digital payment and banking stability in emerging economy with dual banking system,” Heliyon, vol. 8, no. 11, Nov. 2022, doi: 10.1016/j.heliyon.2022.e11198.

K. Khando, M. S. Islam, and S. Gao, “The Emerging Technologies of Digital Payments and Associated Challenges: A Systematic Literature Review,” Future Internet, vol. 15, no. 1, pp. 1–21, Jan. 2023, doi: 10.3390/fi15010021.

A. Chelvarayan, S. F. Yeo, H. Hui Yi, and H. Hashim, “E-Wallet: A Study on Cashless Transactions Among University Students,” F1000Res, vol. 11, p. 687, 2022, doi: 10.12688/f1000research.73545.1.

A. R. Kurniawan, R. Imam, R. F. Zhalifunnas, A. R. Putra, F. L. Gaol, and T. Matsuo, “Use of E-Wallet as a Substitute for Physical Money in Transactions at Malls,” in Inventive Computation and Information Technologies, S. Smys, K. A. Kamel, and R. Palanisamy, Eds., Singapore: Springer Nature Singapore, 2023, pp. 441–450.

M. Yang, A. Al Mamun, M. Mohiuddin, N. C. Nawi, and N. R. Zainol, “Cashless transactions: A study on intention and adoption of e-wallets,” Sustainability (Switzerland), vol. 13, no. 2, pp. 1–18, Jan. 2021, doi: 10.3390/su13020831.

A. Jiang, “The impact of digital finance on online shopping,” Financ Res Lett, vol. 56, p. 104089, 2023, doi: https://doi.org/10.1016/j.frl.2023.104089.

M. Al-Okaily, A. Lutfi, A. Alsaad, A. Taamneh, and A. Alsyouf, “The Determinants of Digital Payment Systems’ Acceptance under Cultural Orientation Differences: The Case of Uncertainty Avoidance,” Technol Soc, vol. 63, pp. 1–15, Nov. 2020, doi: 10.1016/j.techsoc.2020.101367.

A. L. Kilay, B. H. Simamora, and D. P. Putra, “The Influence of E-Payment and E-Commerce Services on Supply Chain Performance: Implications of Open Innovation and Solutions for the Digitalization of Micro, Small, and Medium Enterprises (MSMEs) in Indonesia,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 8, no. 3, pp. 1–25, Sep. 2022, doi: 10.3390/joitmc8030119.

M. N. M. Yunoh, N. S. M. Hashim, Z. C. Musa, M. Muhamad, A. A. M. Hassan, and N. Bahari, “Understanding the factors influencing the adoption of e-wallets by Malaysian youth,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 21, no. 6, pp. 1298–1307, 2023, doi: 10.12928/TELKOMNIKA.v21i6.24082.

T. Alameri, M. N. Hammood, K. Mezaal, and B. Eneizan, “E-Payment Model for The Iraqi Public Sector: A Passport Issuance E-System,” Journal of Engineering Science and Technology, vol. 17, no. 1, pp. 435–0451, 2022.

. Ekta, M. Mehta, and B. Sehgal, “Buying Practices of Homemakers through Cashless Transaction,” Adv Res, vol. 21, no. 12, pp. 53–61, Dec. 2020, doi: 10.9734/air/2020/v21i1230284.

T. K. Setor, P. K. Senyo, and A. Addo, “Do digital payment transactions reduce corruption? Evidence from developing countries,” Telematics and Informatics, vol. 60, pp. 101577–101587, Jul. 2021, doi: 10.1016/j.tele.2021.101577.

F. B. Orellana, “Traditional mediation versus e-mediation: does online technology have a negative impact in the effectiveness of mediation?,” Revista Chilena de Derecho, vol. 50, no. 1, pp. 33–48, 2023, doi: 10.7764/R.501.2.

X.-M. Loh, V.-H. Lee, G. W. H. Tan, K. B. Ooi, and Y. K. Dwivedi, “Switching from cash to mobile payment: what’s the hold-up?,” Internet Research, vol. 31, no. 1, pp. 376–399, Feb. 2021, doi: 10.1108/INTR-04-2020-0175.

M. A. Hassan, Z. Shukur, M. K. Hasan, and A. S. Al-Khaleefa, “A review on electronic payments security,” Aug. 01, 2020, MDPI AG. doi: 10.3390/sym12081344.

R. K. Singhal, P. Chauhan, and T. R. Pandey, “Exploration of Factors Affecting Adoption of Digital Wallet Among Indian Domestic Tourist: Study of Trust and Security Perception,” in 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 2020, pp. 1268–1271. doi: 10.1109/ICRITO48877.2020.9197917.

W. Yang, S. Wang, J. J. Kang, M. N. Johnstone, and A. Bedari, “A linear convolution-based cancelable fingerprint biometric authentication system,” Comput Secur, vol. 114, p. 102583, 2022, doi: https://doi.org/10.1016/j.cose.2021.102583.

C. W. Lien and S. Vhaduri, “Challenges and Opportunities of Biometric User Authentication in the Age of IoT: A Survey,” ACM Comput Surv, vol. 56, no. 1, pp. 1–37, Aug. 2023, doi: 10.1145/3603705.

S. Iqbal et al., “A novel mobile wallet model for elderly using fingerprint as authentication factor,” IEEE Access, vol. 8, pp. 177405–177423, 2020, doi: 10.1109/ACCESS.2020.3025429.

S. S. Ali, V. S. Baghel, I. I. Ganapathi, S. Prakash, N.-S. Vu, and N. Werghi, “A Novel Technique for Fingerprint Based Secure User Authentication,” IEEE Trans Emerg Top Comput, vol. 10, no. 4, pp. 1918–1931, 2022, doi: 10.1109/TETC.2021.3130126.

M. Baskar, R. D. Rajagopal, B. V. V. S. Prasad, J. Chinna Babu, G. P. Bartáková, and T. S. Arulananth, “Multi-region minutiae depth value-based efficient forged finger print analysis,” PLoS One, vol. 18, no. 11, pp. 1–16, Nov. 2023, doi: 10.1371/journal.pone.0293249.

J. Preciozzi et al., “Fingerprint Biometrics From Newborn to Adult: A Study From a National Identity Database System,” IEEE Trans Biom Behav Identity Sci, vol. 2, no. 1, pp. 68–79, 2020, doi: 10.1109/TBIOM.2019.2962188.

S. Bakheet, S. Alsubai, A. Alqahtani, and A. Binbusayyis, “Robust Fingerprint Minutiae Extraction and Matching Based on Improved SIFT Features,” Applied Sciences (Switzerland), vol. 12, no. 12, pp. 1–17, Jun. 2022, doi: 10.3390/app12126122.

G. M. Salama et al., “Secure biometric systems based on bio-signals and DNA encryption of optical spectrograms,” Opt Express, vol. 31, no. 3, pp. 3927–3944, Jan. 2023, doi: 10.1364/oe.478215.

R. Gupta, M. Khari, D. Gupta, and R. G. Crespo, “Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction,” Inf Sci (N Y), vol. 530, pp. 201–218, 2020, doi: https://doi.org/10.1016/j.ins.2020.01.031.

A. Takahashi, Y. Koda, K. Ito, and T. Aoki, “Fingerprint Feature Extraction by Combining Texture, Minutiae, and Frequency Spectrum Using Multi-Task CNN,” in 2020 IEEE International Joint Conference on Biometrics (IJCB), 2020, pp. 1–8. doi: 10.1109/IJCB48548.2020.9304861.

K. Castillo-Rosado, M. Linortner, A. Uhl, H. Mendez-Vasquez, and J. Hernandez-Palancar, “Minutiae-based Finger Vein Recognition Evaluated with Fingerprint Comparison Software,” in 2020 International Conference of the Biometrics Special Interest Group (BIOSIG), 2020, pp. 1–5.

D. L. Andreea-Monica, S. Moldovanu, and L. Moraru, “A Fingerprint Matching Algorithm Using the Combination of Edge Features and Convolution Neural Networks,” Inventions, vol. 7, no. 2, pp. 1–13, Jun. 2022, doi: 10.3390/inventions7020039.

S. S. Ali, V. S. Baghel, I. I. Ganapathi, and S. Prakash, “Robust biometric authentication system with a secure user template,” Image Vis Comput, vol. 104, pp. 1–14, Dec. 2020, doi: 10.1016/j.imavis.2020.104004.

R. Donida Labati and F. Scotti, “Fingerprint,” in Encyclopedia of Cryptography, Security and Privacy, S. Jajodia, P. Samarati, and M. Yung, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 1–6. doi: 10.1007/978-3-642-27739-9_740-2.

F. Liébana-Cabanillas, Z. Kalinic, F. Muñoz-Leiva, and E. Higueras-Castillo, “Biometric m-payment systems: A multi-analytical approach to determining use intention,” Information & Management, vol. 61, no. 2, p. 103907, 2024, doi: https://doi.org/10.1016/j.im.2023.103907.

M. S. Niazy, N. Ahmad, Z. Habibi, B. Niazi, and Nasrullah, “Comparative Analysis of Different Biometric Techniques for Security Systems,” Australian Journal of Engineering and Innovative Technology, vol. 5, no. 3, pp. 141–153, Jun. 2023, doi: 10.34104/ajeit.023.01410153.

E. Nnaemeka Uchenna, O. Obikwelu Raphael, and A. Theophilus Leonard, “Overview of Technologies and Fingerprint Scanner Used for Biometric Capturing,” Innovation, vol. 1, no. 1, pp. 1–5, 2020, doi: 10.11648/j.innov.20200101.11.

B. Mróz-Gorgoń, W. Wodo, A. Andrych, K. Caban-Piaskowska, and C. Kozyra, “Biometrics Innovation and Payment Sector Perception,” Sustainability (Switzerland), vol. 14, no. 15, pp. 1–23, Aug. 2022, doi: 10.3390/su14159424.

H. W. Noh, C. G. Ahn, S. H. Chae, Y. Ku, and J. Y. Sim, “Multichannel Acoustic Spectroscopy of the Human Body for Inviolable Biometric Authentication,” Biosensors (Basel), vol. 12, no. 9, Sep. 2022, doi: 10.3390/bios12090700.

F. Hidayanti, F. Rahmah, and A. Wiryawan, “Design of Motorcycle Security System with Fingerprint Sensor using Arduino Uno Microcontroller,” International Journal of Advanced Science and Technology, vol. 29, no. 5, pp. 4374–4391, 2020.

G. Dahia, L. Jesus, and M. Pamplona Segundo, “Continuous authentication using biometrics: An advanced review,” Jul. 01, 2020, Wiley-Blackwell. doi: 10.1002/widm.1365.

H. Adnan Alzame, M. Alshabanah, and M. K. Alsmadi, “Point of Sale (POS) Network with Embedded Fingerprint Biometric Authentication,” Int J Sci Res Sci Technol, vol. 6, no. 5, pp. 95–111, Sep. 2019, doi: 10.32628/ijsrst119659.

N. Badovinac and D. Simic, “E-Payment Systems Using Multi-card Smartcard,” in Advances in Operational Research in the Balkans, N. Mladenović, A. Sifaleras, and M. Kuzmanović, Eds., Cham: Springer International Publishing, 2020, pp. 237–249.

S. Hutomo, P. Sukarno, and R. Yasirandi, “How Can Fingerprint Improves The Payment Experience of a Drink Vending Machine?,” in 2020 8th International Conference on Information and Communication Technology (ICoICT), 2020, pp. 1–6. doi: 10.1109/ICoICT49345.2020.9166181.

E. Jajuli, M. R. Effendi, L. Kamelia, R. Mardiati, D. Miharja, and E. A. Zaki Hamidi, “The Implementation of Motorcycle Security System Using Voice Commands and Fingerprint Sensors,” in 2021 15th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 2021, pp. 1–6. doi: 10.1109/TSSA52866.2021.9768232.

D. and P. J. Patel Ronakkumar B. and Hiran, “Biometric Fingerprint Recognition Using Minutiae Score Matching,” in Data Science and Intelligent Applications, V. and S. H. N. and P. R. Kotecha Ketan and Piuri, Ed., Singapore: Springer Singapore, 2021, pp. 463–478.

E. M. Cherrat, R. Alaoui, and H. Bouzahir, “A multimodal biometric identification system based on cascade advanced of fingerprint, fingervein and face images,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 1, pp. 1562–1570, 2020, doi: 10.11591/ijeecs.v18.i1.pp1562-1570.

S. Bakheet, A. Al-Hamadi, and R. Youssef, “A Fingerprint-Based Verification Framework Using Harris and SURF Feature Detection Algorithms,” Applied Sciences (Switzerland), vol. 12, no. 4, Feb. 2022, doi: 10.3390/app12042028.

S. Hemalatha, “A systematic review on Fingerprint based Biometric Authentication System,” in International Conference on Emerging Trends in Information Technology and Engineering, ic-ETITE, Institute of Electrical and Electronics Engineers Inc., Feb. 2020, pp. 1–4. doi: 10.1109/ic-ETITE47903.2020.342.

Z. Liu, Y. Niu, and Q. Qu, “Fingerprint Identification using Ridge Lines,” in 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA), 2022, pp. 732–735. doi: 10.1109/CVIDLICCEA56201.2022.9825387.

N. Bhuvaneswary, C. V. Reddy, C. Aravind, and K. H. Prasad, “Smart Voting Machine using Fingerprint Sensor and Face Recognition,” in 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 2022, pp. 1159–1166. doi: 10.1109/ICAAIC53929.2022.9792643.

Z. Alqadi, M. Abuzalata, Y. Eltous, and G. M. Qaryouti, “Analysis of Fingerprint Minutiae to Form Fingerprint Identifier,” INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION, vol. 4, no. 1, pp. 10–15, 2020, doi: dx.doi.org/10.30630/joiv.4.1.332.

A. Alotaibi, M. Hussain, and H. A. Aboalsamh, “Cross-Sensor Fingerprint Recognition Using Convolutional Neural Network and Canonical Correlation Analysis,” IEEE Access, vol. 12, pp. 84738–84751, 2024, doi: 10.1109/ACCESS.2024.3413975.

W. Lei and Y. Lin, “A Novel Dynamic Fingerprint Segmentation Method Based on Fuzzy C-Means and Genetic Algorithm,” IEEE Access, vol. 8, pp. 132694–132702, 2020, doi: 10.1109/ACCESS.2020.3011025.

M. Gao, Y. Tang, H. Liu, and R. Ma, “Statistics of fingerprint minutiae frequency and distribution based on automatic minutiae detection method,” Forensic Sci Int, vol. 344, p. 111572, 2023, doi: https://doi.org/10.1016/j.forsciint.2023.111572.

L. Makni and C. Charrier, “Minutia Confidence Index: A new framework to qualify minutia usefulness,” in Proceedings - 2020 International Conference on Cyberworlds, CW 2020, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, pp. 257–264. doi: 10.1109/CW49994.2020.00048.

N. Alsharman, A. Saaidah, O. Almomani, I. Jawarneh, and L. Al-Qaisi, “Pattern Mathematical Model for Fingerprint Security Using Bifurcation Minutiae Extraction and Neural Network Feature Selection,” Security and Communication Networks, vol. 2022, no. 1, pp. 1–16, 2022, doi: 10.1155/2022/4375232.

G. Raj M., S. Rakshitha, S. Priya S., S. Vaishnavi, and A. Sivaranjani, “Latent Fingerprint Enhancement for Investigation,” in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 2020, pp. 644–648. doi: 10.1109/ICACCS48705.2020.9074191.

S. Socheat and T. Wang, “Fingerprint Enhancement, Minutiae Extraction and Matching Techniques,” Journal of Computer and Communications, vol. 08, no. 05, pp. 55–74, 2020, doi: 10.4236/jcc.2020.85003.

M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, “Supervised Deep Learning in Fingerprint Recognition,” in Advances in Deep Learning, M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Eds., Singapore: Springer Singapore, 2020, pp. 111–132. doi: 10.1007/978-981-13-6794-6_7.

A. J. Mohamed Abdul Cader, J. Banks, and V. Chandran, “Fingerprint Systems: Sensors, Image Acquisition, Interoperability and Challenges,” Sensors, vol. 23, no. 14, pp. 1–28, Jul. 2023, doi: 10.3390/s23146591.

Y. Surajkanta and S. Pal, “A Digital Geometry-Based Fingerprint Matching Technique,” Arab J Sci Eng, vol. 46, no. 4, pp. 4073–4086, Apr. 2021, doi: 10.1007/s13369-021-05390-4.

J. K. Appati, P. K. Nartey, E. Owusu, and I. W. Denwar, “Implementation of a Transform-Minutiae Fusion-Based Model for Fingerprint Recognition,” Int J Math Math Sci, vol. 2021, no. 1, pp. 1–12, 2021, doi: 10.1155/2021/5545488.

K. Y. Qureshi, S. A. Khan, and J. M.Y, “Effectiveness of assigning confidence levels to classifiers and a novel feature in fingerprint matching,” in Conference Proceedings - IEEE International Conference on Applied Computational Science, 2009, pp. 181–186. doi: 10.1109/ICSMC.2009.5346241.

S. K. D. R., R. K. Chhotaray, K. B. Raja., and S. Pattanaik, “Fingerprint Verification based on fusion of Minutiae and Ridges using Strength Factors,” Int J Comput Appl, vol. 4, no. 1, pp. 1–8, Jul. 2010, doi: 10.5120/799-1136.

A. M. Bazen and S. H. Gerez, “Fingerprint matching by thin-plate spline modelling of elastic deformations,” Pattern Recognit, vol. 36, no. 8, pp. 1859–1867, 2003, doi: 10.1016/S0031-3203(03)00036-0.

A. Budijanto, S. Winardi, and K. E. Susilo, Interfacing ESP32. Surabaya: Scopindo Media Pustaka, 2021.

Lady Ada and K. Rembor, “Adafruit Optical Fingerprint Sensor,” adafruit. Accessed: Jan. 20, 2024. [Online]. Available: https://learn.adafruit.com/adafruit-optical-fingerprint-sensor?view=all

D. and J. A. K. and F. J. Maltoni Davide and Maio, “Fingerprint Sensing,” in Handbook of Fingerprint Recognition, Cham: Springer International Publishing, 2022, pp. 63–114. doi: 10.1007/978-3-030-83624-5_2.

W.-C. Lin, C.-T. Hsieh, and M.-C. Chang, “Design and implementation of pixel-based adjustable ESD protection circuits for capacitive fingerprint biometric sensors,” International Journal of Circuit Theory and Applications, vol. 51, no. 3, pp. 991–1006, Mar. 2023, doi: https://doi.org/10.1002/cta.3477.

H. Zhengfang, A. J. P. Delima, I. K. D. Machica, J. C. T. Arroyo, S. Weibin, and X. Gang, “Fingerprint Identification based on Novel Siamese Rectangular Convolutional Neural Networks,” International Journal of Emerging Technology and Advanced Engineering, vol. 12, no. 5, pp. 28–37, May 2022, doi: 10.46338/ijetae0522_04.

G. Awasthi, H. S. Fadewar, A. Siddiqui, and B. Gaikwad, “Analysis of Fingerprint Recognition System Using Neural Network,” in 2nd International Conference on Communication & Information Processing (ICCIP), 2020, pp. 1–11. [Online]. Available: https://ssrn.com/abstract=3648835

R. Raghavan and K. John Singh, “An enhanced and hybrid fingerprint minutiae feature extraction method for identifying and authenticating the patient’s noisy fingerprint,” International Journal of System Assurance Engineering and Management, vol. 15, no. 1, pp. 84–97, 2024, doi: 10.1007/s13198-022-01674-6.