Analyzing Rupiah-USD Exchange Rate Dynamics: A Study with ARCH and GARCH Models

Ansari Saleh Ahmar - Universitas Negeri Makassar, Makassar, Indonesia
Salim Al Idrus - Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
- Asmar - Universitas Negeri Makassar, Makassar, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3-2.3251

Abstract


The study aims to analyze the volatility of the Rupiah-USD exchange rate and predict future fluctuations using the Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models. The exchange rate data, spanning from January 2010 to December 2023, is sourced from Bank Indonesia (BI) and adheres to the Jakarta Interbank Spot Dollar Rate (JISDOR) regulations, focusing solely on business days. ARCH and GARCH models are widely applied in financial time series analysis because they capture and forecast time-varying volatility. This study analyzes historical exchange rate data to evaluate the persistence of volatility and detect any structural breaks that could impact future exchange rate behavior. The findings reveal that both models effectively capture the volatility of the Rupiah-USD exchange rate, but the GARCH (1,1) model demonstrates superior forecasting accuracy. This model's ability to account for long-term volatility clustering makes it particularly useful for predicting exchange rate dynamics. The research contributes to a deeper understanding of the factors driving exchange rate fluctuations, offering valuable insights for policymakers, investors, and businesses. These insights can help stakeholders manage exchange rate risks more effectively within Indonesia's open economy, where global financial conditions and external shocks significantly shape currency movements. The study emphasizes the importance of using advanced econometric models for accurate volatility predictions and informed decision-making.

Keywords


ARCH; GARCH; exchange rate; Rupiah-USD

Full Text:

PDF

References


N. Mselmi, T. Hamza, A. Lahiani, and M. Shahbaz, “Pricing corporate financial distress: Empirical evidence from the French stock market,” J. Int. Money Financ., vol. 96, pp. 13–27, Sep. 2019, doi: 10.1016/j.jimonfin.2019.04.008.

U. Aysun and M. Guldi, “Exchange rate exposure: A nonparametric approach,” Emerg. Mark. Rev., vol. 12, no. 4, pp. 321–337, Dec. 2011, doi: 10.1016/j.ememar.2011.05.002.

N. Ghebrihiwet, “FDI technology spillovers in the mining industry: Lessons from South Africa’s mining sector,” Resour. Policy, vol. 62, pp. 463–471, Aug. 2019, doi: 10.1016/j.resourpol.2018.04.005.

Z. Kilicarslan, “Determinants of exchange rate volatility: empirical evidence for Turkey,” Pressacademia, vol. 5, no. 2, pp. 204–213, Jun. 2018, doi: 10.17261/Pressacademia.2018.825.

A. N. Berdiev, Y. Kim, and C. P. Chang, “The political economy of exchange rate regimes in developed and developing countries,” Eur. J. Polit. Econ., vol. 28, no. 1, pp. 38–53, Mar. 2012, doi: 10.1016/j.ejpoleco.2011.06.007.

M. Dmitriev and J. Hoddenbagh, “Optimal fiscal transfers in a monetary union,” J. Int. Econ., vol. 117, pp. 91–108, Mar. 2019, doi: 10.1016/j.jinteco.2019.01.003.

P. R. Lane and R. Perotti, “The importance of composition of fiscal policy: evidence from different exchange rate regimes,” J. Public Econ., vol. 87, no. 9–10, pp. 2253–2279, Sep. 2003, doi: 10.1016/S0047-2727(01)00194-3.

E. Stockhammer, R. Calvert Jump, K. Kohler, and J. Cavallero, “Short and medium term financial-real cycles: An empirical assessment,” J. Int. Money Financ., vol. 94, pp. 81–96, Jun. 2019, doi: 10.1016/j.jimonfin.2019.02.006.

S. Lahmiri, “Modeling and predicting historical volatility in exchange rate markets,” Phys. A Stat. Mech. its Appl., vol. 471, pp. 387–395, Apr. 2017, doi: 10.1016/j.physa.2016.12.061.

P. Aghion, P. Bacchetta, R. Rancière, and K. Rogoff, “Exchange rate volatility and productivity growth: The role of financial development,” J. Monet. Econ., vol. 56, no. 4, pp. 494–513, May 2009, doi: 10.1016/j.jmoneco.2009.03.015.

M. Ashour and C. Chen Yong, “The impact of exchange rate regimes on economic growth: Empirical study of a set of developing countries during the period 1974–2006,” J. Int. Trade Econ. Dev., vol. 27, no. 1, pp. 74–90, Jan. 2018, doi: 10.1080/09638199.2017.1339117.

T. Suzuki, “The Renminbi Exchange Rate Reform and Its Implications for Asian Markets,” China Q. Int. Strateg. Stud., vol. 02, no. 04, pp. 485–506, Jan. 2016, doi: 10.1142/S2377740016500317.

J. Shi, “Vertical FDI and exchange rates over the business cycle: The welfare implications of openness to FDI,” J. Dev. Econ., vol. 138, pp. 274–293, May 2019, doi: 10.1016/j.jdeveco.2019.01.004.

Vivi Elsye Liau and Caroline Geetha, “AN EMPIRICAL EVIDENCE ON THE IMPACT OF REAL EFFECTIVE EXCHANGE RATE ON TRADE BALANCE,” Malaysian J. Bus. Econ., vol. 7, no. 2, p. 51, Dec. 2020, doi: 10.51200/mjbe.vi.2881.

G. C. Alam and B. Wibowo, “Comparative Analysis of Value-at-Risk in Market Risk Prediction in Banks Using GARCH Volatility,” Quant. Econ. Manag. Stud., vol. 5, no. 3, pp. 682–694, Jun. 2024, doi: 10.35877/454RI.qems2661.

X. Zhong and D. Enke, “Forecasting daily stock market return using dimensionality reduction,” Expert Syst. Appl., vol. 67, pp. 126–139, Jan. 2017, doi: 10.1016/j.eswa.2016.09.027.

A. S. Ahmar, M. Botto-Tobar, A. Rahman, and R. Hidayat, “Forecasting the Value of Oil and Gas Exports in Indonesia using ARIMA Box-Jenkins,” JINAV J. Inf. Vis., vol. 3, no. 1, pp. 35–42, Jul. 2022, doi: 10.35877/454RI.jinav260.

H. Taha Abd, A. K. Essa, and F. M. Jassim, “Analyzing the Relationship between the Dow Jones Index and Oil Prices Using the ARIMAX Model,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 2, pp. 465–473, Apr. 2021, doi: 10.18517/ijaseit.11.2.14080.

M. Epaphra, “Modeling Exchange Rate Volatility: Application of the GARCH and EGARCH Models,” J. Math. Financ., vol. 07, no. 01, pp. 121–143, 2017, doi: 10.4236/jmf.2017.71007.

S. Nurman, M. Nusrang, and Sudarmin, “Analysis of Rice Production Forecast in Maros District Using the Box-Jenkins Method with the ARIMA Model,” ARRUS J. Math. Appl. Sci., vol. 2, no. 1, pp. 36–48, Feb. 2022, doi: 10.35877/mathscience731.

A. Cahyaning Pratiwi, A. Kusuma Wardhana, and S. Rusgianto, “Application of Vector Error Correction Model on Macroeconomic Variables toward Changes in the Composite Stock Price Index,” Daengku J. Humanit. Soc. Sci. Innov., vol. 2, no. 2, pp. 219–229, Jun. 2022, doi: 10.35877/454RI.daengku883.

C. Zhuo, Y. Xie, Y. Mao, P. Chen, and Y. Li, “Can cross-regional environmental protection promote urban green development: Zero-sum game or win-win choice?,” Energy Econ., vol. 106, p. 105803, Feb. 2022, doi: 10.1016/j.eneco.2021.105803.

F. Allen, X. Gu, and J. Jagtiani, “Fintech, Cryptocurrencies, and CBDC: Financial Structural Transformation in China,” J. Int. Money Financ., vol. 124, p. 102625, Jun. 2022, doi: 10.1016/j.jimonfin.2022.102625.

J. Xiang and L. Li, “Monetary policy uncertainty, debt financing cost and real economic activities: Evidence from China,” Int. Rev. Econ. Financ., vol. 80, pp. 1025–1044, Jul. 2022, doi: 10.1016/j.iref.2022.03.006.

O. Omobitan and A. R. Khanal, “Examining Farm Financial Management: How Do Small US Farms Meet Their Agricultural Expenses?,” J. Risk Financ. Manag., vol. 15, no. 3, p. 133, Mar. 2022, doi: 10.3390/jrfm15030133.

C. M. Lim and S. K. Sek, “Comparing the Performances of GARCH-type Models in Capturing the Stock Market Volatility in Malaysia,” Procedia Econ. Financ., vol. 5, pp. 478–487, 2013, doi: 10.1016/S2212-5671(13)00056-7.

N. Thampanya, J. Wu, M. A. Nasir, and J. Liu, “Fundamental and behavioural determinants of stock return volatility in ASEAN-5 countries,” J. Int. Financ. Mark. Institutions Money, vol. 65, p. 101193, Mar. 2020, doi: 10.1016/j.intfin.2020.101193.

B. Bernanke, V. Reinhart, and B. Sack, “Monetary Policy Alternatives at the Zero Bound: An Empirical Assessment,” Brookings Pap. Econ. Act., vol. 2004, no. 2, pp. 1–100, 2004, doi: 10.1353/eca.2005.0002.

H. G. Keefe, “The impact of exchange rate volatility on inflation targeting monetary policy in emerging and advanced economies,” Int. Financ., vol. 23, no. 3, pp. 417–433, Dec. 2020, doi: 10.1111/infi.12368.

W. Thorbecke, “How oil prices affect East and Southeast Asian economies: Evidence from financial markets and implications for energy security,” Energy Policy, vol. 128, pp. 628–638, May 2019, doi: 10.1016/j.enpol.2019.01.044.

S. Dibooglu, E. I. Cevik, and H. A. H. Al Tamimi, “Credit default risk in Islamic and conventional banks: Evidence from a GARCH option pricing model,” Econ. Anal. Policy, vol. 75, pp. 396–411, Sep. 2022, doi: 10.1016/j.eap.2022.06.006.

T. Yang, P. Tsai, and T. Chiang, “The effect of financial knowledge on asset allocation for Chinese households,” Pacific Econ. Rev., vol. 29, no. 4, pp. 442–468, Oct. 2024, doi: 10.1111/1468-0106.12390.

M. E. Siburian, “The link between fiscal decentralization and poverty – Evidence from Indonesia,” J. Asian Econ., vol. 81, p. 101493, Aug. 2022, doi: 10.1016/j.asieco.2022.101493.

B. Gaudenzi, G. A. Zsidisin, J. L. Hartley, and L. Kaufmann, “An exploration of factors influencing the choice of commodity price risk mitigation strategies,” J. Purch. Supply Manag., vol. 24, no. 3, pp. 218–237, Jun. 2018, doi: 10.1016/j.pursup.2017.01.004.