Batik Image Representation using Multi Texton Co-occurrence Histogram
DOI: http://dx.doi.org/10.62527/joiv.8.3-2.3095
Abstract
This paper introduces a novel approach to batik image representation using the texton-based and statistical Multi Texton Co-occurrence Histogram (MTCH). The MTCH framework is leveraged as a robust batik image descriptor, capable of encapsulating a comprehensive range of visual features, including the intricate interplay of color, texture, shape, and statistical attributes. The research extensively evaluates the effectiveness of MTCH through its application on two well-established public batik datasets, namely Batik 300 and Batik Nitik 960. These datasets serve as benchmarks for assessing the performance of MTCH in both classification and image retrieval tasks. In the classification domain, four distinct scenarios were explored, employing various classifiers: the K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Decision Tree (DT), and Naïve Bayes (NB). Each classifier was rigorously tested to determine its efficacy in correctly identifying batik patterns based on the MTCH descriptors. On the other hand, the image retrieval tasks were conducted using several distance metrics, including the Euclidean distance, City Block, Bray Curtis, and Canberra, to gauge the retrieval accuracy and the robustness of the MTCH framework in matching similar batik images. The empirical results derived from this study underscore the superior performance of the MTCH descriptor across all tested scenarios. The evaluation metrics, including accuracy, precision, and recall, indicate that MTCH not only achieves high classification performance but also excels in retrieving images with high similarity to the query. These findings suggest that MTCH is a highly effective tool for batik image analysis, offering significant potential for applications in cultural heritage preservation, textile pattern recognition, and automated batik classification systems.
Keywords
Full Text:
PDFReferences
N. Setyawan, M. N. Achmadiah, C. C. Sun, and W. K. Kuo, “Multi-Stage Vision Transformer for Batik Classification,” 2024 International Electronics Symposium: Shaping the Future: Society 5.0 and Beyond, IES 2024 - Proceeding, pp. 449–453, 2024, doi: 10.1109/IES63037.2024.10665807.
A. E. Minarno, I. Soesanti, and H. A. Nugroho, “Optimization of BatikGAN with Gradient Loss for Enhanced Batik Motif Generation,” 2024 6th IEEE Symposium on Computers and Informatics, ISCI 2024, pp. 305–310, 2024, doi: 10.1109/ISCI62787.2024.10668317.
X. Zhao, C. Shu, S. Jiang, and Y. Hu, “From classification to matching: A CNN-based approach for retrieving painted pottery images,” Digital Applications in Archaeology and Cultural Heritage, vol. 29, p. e00269, Jun. 2023, doi: 10.1016/J.DAACH.2023.E00269.
A. Colmenero-Fernández and F. Feito, “Image processing for graphic normalisation of the ceramic profile in archaeological sketches making use of deep neuronal net (DNN),” Digital Applications in Archaeology and Cultural Heritage, vol. 22, p. e00196, Sep. 2021, doi: 10.1016/J.DAACH.2021.E00196.
M. Seidl, E. Wieser, and C. Alexander, “Automated classification of petroglyphs,” Digital Applications in Archaeology and Cultural Heritage, vol. 2, no. 2–3, pp. 196–212, Jan. 2015, doi: 10.1016/J.DAACH.2015.03.001.
A. E. Minarno, I. Soesanti, and H. A. Nugroho, “Batik Nitik 960 Dataset for Classification, Retrieval, and Generator,” Data 2023, Vol. 8, Page 63, vol. 8, no. 4, p. 63, Mar. 2023, doi: 10.3390/DATA8040063.
A. E. Minarno, I. Soesanti, and H. A. Nugroho, “Batik Image Retrieval using Convolutional Autoencoder,” 14th IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE 2024, pp. 15–20, 2024, doi: 10.1109/ISCAIE61308.2024.10576476.
A. E. Minarno, I. Soesanti, and H. A. Nugroho, “A Convolutional Neural Network Model for Batik Image Retrieval,” 14th IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE 2024, pp. 31–36, 2024, doi: 10.1109/ISCAIE61308.2024.10576422.
“Batik image Retrieval based on Convolutional Neural Network | Code Ocean.” Accessed: Oct. 22, 2024. [Online]. Available: https://codeocean.com/capsule/1012598/tree/v1
“Batik image Retrieval based on Autoencoder | Code Ocean.” Accessed: Oct. 22, 2024. [Online]. Available: https://codeocean.com/capsule/8881860/tree/v1
X. Bu, Y. Wu, Z. Gao, and Y. Jia, “Deep convolutional network with locality and sparsity constraints for texture classification,” Pattern Recognit, vol. 91, pp. 34–46, Jul. 2019, doi: 10.1016/J.PATCOG.2019.02.003.
B. Khaldi, O. Aiadi, and K. M. Lamine, “Image representation using complete multi-texton histogram,” Multimed Tools Appl, vol. 79, no. 11–12, pp. 8267–8285, Mar. 2020, doi: 10.1007/S11042-019-08350-1/METRICS.
A. E. Minarno, I. Soesanti, and H. A. Nugroho, “Batik Classification using Microstructure Co-occurrence Histogram,” JOIV : International Journal on Informatics Visualization, vol. 8, no. 1, pp. 134–140, Mar. 2024, doi: 10.62527/JOIV.8.1.2152.
V. Ayumi, I. Nurhaida, and W. H. Haji, “Designing a Web Application for Detecting Indonesian Batik Motifs Based on Image Processing and Machine Learning,” JSAI (Journal Scientific and Applied Informatics), vol. 6, no. 3, pp. 499–504, Nov. 2023, doi: 10.36085/JSAI.V6I3.6240.
Y. Sari, M. Alkaff, and R. A. Pramunendar, “Classification of coastal and Inland Batik using GLCM and Canberra Distance,” AIP Conf Proc, vol. 1977, no. 1, Jun. 2018, doi: 10.1063/1.5042901/1029937.
N. K. Hamzidah, A. Jariyah, A. R. Ramadhani, N. Nurhasni, M. M. Parenreng, and S. Suyuti, “Evaluation of image feature extraction using gray level co-occurrence matrix (GLCM) parameters and multilayer perceptron (MLP) algorithms in classifying typical batik motifs of South Sulawesi,” AIP Conf Proc, vol. 3140, no. 1, Jul. 2024, doi: 10.1063/5.0221156/3302835.
F. Budiman, A. Suhendra, D. Agushinta, and A. Tarigan, “Determination of SVM-RBF Kernel Space Parameter to Optimize Accuracy Value of Indonesian Batik Images Classification,” Journal of Computer Science, vol. 13, no. 11, pp. 590–599, Oct. 2017, doi: 10.3844/JCSSP.2017.590.599.
F. Budiman, “SVM-RBF Parameters Testing Optimization Using Cross Validation and Grid Search to Improve Multiclass Classification,” Scientific Visualization, vol. 11, no. 1, pp. 80–90, 2019, doi: 10.26583/SV.11.1.07.
A. E. Minarno, Y. Azhar, F. D. Setiawan Sumadi, and Y. Munarko, “A Robust Batik Image Classification using Multi Texton Co-Occurrence Descriptor and Support Vector Machine,” 2020 3rd International Conference on Intelligent Autonomous Systems, ICoIAS 2020, pp. 51–55, Feb. 2020, doi: 10.1109/ICOIAS49312.2020.9081833.
A. H. Rangkuti, Z. E. Rasjid, and D. J. Santoso, “Batik Image Classification Using Treeval and Treefit as Decision Tree Function in Optimizing Content Based Batik Image Retrieval,” Procedia Comput Sci, vol. 59, pp. 577–583, Jan. 2015, doi: 10.1016/J.PROCS.2015.07.551.
M. Fadhilla, D. Suryani, N. Syafitri, and H. Gunawan, “Image Retrieval of Indonesian Batik Clothing Based on Convolutional Neural Network,” Proceedings of the International Conference on Electrical Engineering and Informatics, vol. 2022-October, pp. 177–180, 2022, doi: 10.1109/ICONEEI55709.2022.9972332.
J. M. Guo, A. W. H. Prayuda, and H. Prasetyo, “Hashing-based Batik Image Retrieval using Progressive Multi-Stage Training,” APICS 2022 - 2022 1st International Conference on Smart Technology, Applied Informatics, and Engineering, Proceedings, pp. 21–26, 2022, doi: 10.1109/APICS56469.2022.9918690.
“Statistical Modeling of Gabor Filtered Magnitude for Batik Image Retrieval | Journal of Telecommunication, Electronic and Computer Engineering (JTEC).” Accessed: Jun. 21, 2024. [Online]. Available: https://jtec.utem.edu.my/jtec/article/view/4322
B. R. Lidiawaty, M. Isa Irawan, and R. V. Hari Ginardi, “Image Pattern Verification Based on Seller’s Batik Solo Product Name Using SURF As A Texture Based Image Retrieval,” IES 2020 - International Electronics Symposium: The Role of Autonomous and Intelligent Systems for Human Life and Comfort, pp. 674–679, Sep. 2020, doi: 10.1109/IES50839.2020.9231950.
E. M. Martey, H. Lei, X. Li, and O. Appiah, “Image Representation Using Stacked Colour Histogram,” Algorithms 2021, Vol. 14, Page 228, vol. 14, no. 8, p. 228, Jul. 2021, doi: 10.3390/A14080228.
A. E. Minarno, M. Y. Hasanuddin, and Y. Azhar, “Batik Images Retrieval Using Pre-trained model and K-Nearest Neighbor,” JOIV : International Journal on Informatics Visualization, vol. 7, no. 1, pp. 115–121, Feb. 2023, doi: 10.30630/JOIV.7.1.1299.
“View of Batik Image Retrieval Using ODBTC Feature and Particle Swarm Optimization.” Accessed: Jun. 21, 2024. [Online]. Available: https://jtec.utem.edu.my/jtec/article/view/4319/3166
H. Prasetyo and J. W. Simatupang, “Batik Image Retrieval Using Maximum Run Length LBP and Sine-Cosine Optimizer,” ICSECC 2019 - International Conference on Sustainable Engineering and Creative Computing: New Idea, New Innovation, Proceedings, pp. 265–269, Aug. 2019, doi: 10.1109/ICSECC.2019.8907190.
R. M. Haralick, I. Dinstein, and K. Shanmugam, “Textural Features for Image Classification,” IEEE Trans Syst Man Cybern, vol. SMC-3, no. 6, pp. 610–621, 1973, doi: 10.1109/TSMC.1973.4309314.
G. H. Liu, L. Zhang, Y. K. Hou, Z. Y. Li, and J. Y. Yang, “Image retrieval based on multi-texton histogram,” Pattern Recognit, vol. 43, no. 7, pp. 2380–2389, Jul. 2010, doi: 10.1016/J.PATCOG.2010.02.012.
G. H. Liu, L. Zhang, Y. K. Hou, Z. Y. Li, and J. Y. Yang, “Image retrieval based on multi-texton histogram,” Pattern Recognit, vol. 43, no. 7, pp. 2380–2389, Jul. 2010, doi: 10.1016/J.PATCOG.2010.02.012.
A. Minarno and N. Suciati, “Batik 300,” vol. 1, 2022, doi: 10.17632/VZ7PZT2GRF.1.