The Use of Hyperparameter Tuning in Model Classification: A Scientific Work Area Identification
DOI: http://dx.doi.org/10.62527/joiv.8.4.3092
Abstract
Keywords
Full Text:
PDFReferences
J. Wong, T. Manderson, M. Abrahamowicz, D. L. Buckeridge, and R. Tamblyn, “Can Hyperparameter Tuning Improve the Performance of a Super Learner?,” Epidemiology, vol. 30, no. 4, pp. 521–531, Jul. 2019, doi: 10.1097/ede.0000000000001027.
O. A. Montesinos López, A. Montesinos López, and J. Crossa, Multivariate Statistical Machine Learning Methods for Genomic Prediction. Springer International Publishing, 2022. doi: 10.1007/978-3-030-89010-0.
L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, Nov. 2020, doi: 10.1016/j.neucom.2020.07.061.
J.-P. Lai, Y.-L. Lin, H.-C. Lin, C.-Y. Shih, Y.-P. Wang, and P.-F. Pai, “Tree-Based Machine Learning Models with Optuna in Predicting Impedance Values for Circuit Analysis,” Micromachines, vol. 14, no. 2, p. 265, Jan. 2023, doi: 10.3390/mi14020265.
S. Hadianti, “Optimization of The Machine Learning Approach using Optuna in Heart Disease Prediction,” Journal Medical Informatics Technology, pp. 59–64, Sep. 2023, doi: 10.37034/medinftech.v1i3.15.
A. M. Vincent and P. Jidesh, “An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms,” Scientific Reports, vol. 13, no. 1, Mar. 2023, doi:10.1038/s41598-023-32027-3.
M. K. Anam, T. A. Fitri, A. Agustin, L. Lusiana, M. B. Firdaus, and A. T. Nurhuda, “Sentiment Analysis for Online Learning using The Lexicon-Based Method and The Support Vector Machine Algorithm,” Ilkom Jurnal Ilmiah, vol. 15, no. 2, pp. 290–302, Aug. 2023, doi:10.33096/ilkom.v15i2.1590.290-302.
J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, Mar. 2019, doi:10.11989/JEST.1674-862X.80904120.
K. E. Hoque and H. Aljamaan, “Impact of Hyperparameter Tuning on Machine Learning Models in Stock Price Forecasting,” IEEE Access, vol. 9, pp. 163815–163830, 2021, doi: 10.1109/access.2021.3134138.
E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis,” Informatics, vol. 8, no. 4, p. 79, Nov. 2021, doi:10.3390/informatics8040079.
Y. Ali, E. Awwad, M. Al-Razgan, and A. Maarouf, “Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity,” Processes, vol. 11, no. 2, p. 349, Jan. 2023, doi: 10.3390/pr11020349.
A. Tikaningsih, P. Lestari, A. Nurhopipah, I. Tahyudin, E. Winarto, and N. Hassa, “Optuna Based Hyperparameter Tuning for Improving the Performance Prediction Mortality and Hospital Length of Stay for Stroke Patients,” Telematika, vol. 17, no. 1, pp. 1–16, Feb. 2024, doi:10.35671/telematika.v17i1.2816.
M. Arifin, W. Widowati, and F. Farikhin, “Optimization of Hyperparameters in Machine Learning for Enhancing Predictions of Student Academic Performance,” Ingénierie des systèmes d information, vol. 28, no. 3, pp. 575–582, Jun. 2023, doi:10.18280/isi.280305.
G. Ramadhan, “Comparative Analysis of ADASYN-SVM and SMOTE-SVM Methods on the Detection of Type 2 Diabetes Mellitus,” Scientific Journal of Informatics, vol. 8, no. 2, pp. 276–282, Nov. 2021, doi: 10.15294/sji.v8i2.32484.
R. Shahid et al., “Predicting Customer Sentiment in Social Media Interactions: Analyzing Amazon Help Twitter Conversations Using Machine Learning,” International Journal of Advanced Science Computing and Engineering, vol. 6, no. 2, pp. 52–56, Jul. 2024, doi:10.62527/ijasce.6.2.211.
A. Mohammed and R. Kora, “A comprehensive review on ensemble deep learning: Opportunities and challenges,” Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 2, pp. 757–774, Feb. 2023, doi: 10.1016/j.jksuci.2023.01.014.
R. Arifudin, D. Indra Wijaya, B. Warsito, and A. Wibowo, “Voting Classifier Technique and Count Vectorizer with N-gram to Identify Hate Speech and Abusive Tweets in Indonesian,” Scientific Journal of Informatics, vol. 10, no. 4, p. 469, 2023, doi: 10.15294/sji.v10i4.46633.
S. Karlos, G. Kostopoulos, and S. Kotsiantis, “A Soft-Voting Ensemble Based Co-Training Scheme Using Static Selection for Binary Classification Problems,” Algorithms, vol. 13, no. 1, p. 26, Jan. 2020, doi: 10.3390/a13010026.
W. Ccoya and E. Pinto, "Comparative analysis of libraries for the sentimental analysis," 2023. [Online]. Available: https://arxiv.org/abs/2307.14311. [Accessed: Sep. 19, 2024].
T. A. Assegie, “An optimized K-Nearest Neighbor based breast cancer detection,” Journal of Robotics and Control (JRC), vol. 2, no. 3, 2021, doi: 10.18196/jrc.2363.
D. C. E. Saputra, A. Ma’arif, and K. Sunat, “Optimizing Predictive Performance: Hyperparameter Tuning in Stacked Multi-Kernel Support Vector Machine Random Forest Models for Diabetes Identification,” Journal of Robotics and Control (JRC), vol. 4, no. 6, pp. 896–904, Jan. 2024, doi: 10.18196/jrc.v4i6.20898.
J. Zhang, Y. Li, F. Shen, Y. He, H. Tan, and Y. He, “Hierarchical text classification with multi-label contrastive learning and KNN,” Neurocomputing, vol. 577, p. 127323, Apr. 2024, doi:10.1016/j.neucom.2024.127323.
A. Zamsuri, S. Defit, and G. W. Nurcahyo, “Classification of Multiple Emotions in Indonesian Text Using The K-Nearest Neighbor Method,” Journal of Applied Engineering and Technological Science (JAETS), vol. 4, no. 2, pp. 1012–1021, Jun. 2023, doi: 10.37385/jaets.v4i2.1964.
M. Y. Baihaqi, E. Halawa, R. A. S. Syah, A. Nurrahma, and W. Wijaya, “Emotion Classification in Indonesian Language: A CNN Approach with Hyperband Tuning,” Jurnal Buana Informatika, vol. 14, no. 02, pp. 137–146, Oct. 2023, doi: 10.24002/jbi.v14i02.7558.
M. K. Anam, M. I. Mahendra, W. Agustin, R. Rahmaddeni, and N. Nurjayadi, “Framework for Analyzing Netizen Opinions on BPJS Using Sentiment Analysis and Social Network Analysis (SNA),” Intensif: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 6, no. 1, pp. 11–28, Feb. 2022, doi:10.29407/intensif.v6i1.15870.
A. Handayanto, P. D. Yulianti, and K. Latifah, “Covid-19 Impact on Divorce Case Using Sentiment Analysis,” SAINTEKS, vol. 18, no. 2, pp. 145–154, 2021.
A. Majid, D. Nugraha, and F. D. Adhinata, “Sentiment Analysis on Tiktok Application Reviews Using Natural Language Processing Approach,” Journal of Embedded System Security and Intelligent System, vol. 4, no. 1, pp. 32–38, 2023, doi: 10.26858/jessi.v4i1.41897.
K. K. Agustiningsih, E. Utami, and M. A. Alsyaibani, “Sentiment Analysis of COVID-19 Vaccines in Indonesia on Twitter Using Pre-Trained and Self-Training Word Embeddings,” Jurnal Ilmu Komputer dan Informasi, vol. 15, no. 1, pp. 39–46, Feb. 2022, doi:10.21609/jiki.v15i1.1044.
E. Escobar-Linero, F. Luna-Perejón, L. Muñoz-Saavedra, J. L. Sevillano, and M. Domínguez-Morales, “On the feature extraction process in machine learning. An experimental study about guided versus non-guided process in falling detection systems,” Engineering Applications of Artificial Intelligence, vol. 114, p. 105170, Sep. 2022, doi: 10.1016/j.engappai.2022.105170.
Z. Zhang, Y. Lei, J. Xu, X. Mao, and X. chang, “TFIDF-FL: Localizing Faults Using Term Frequency-Inverse Document Frequency and Deep Learning,” IEICE Transactions on Information and Systems, vol. E102.D, no. 9, pp. 1860–1864, Sep. 2019, doi:10.1587/transinf.2018edl8237.
Okfalisa, L. Handayani, D. J. P., M. Affandes, M. Fauzi, dan Saktioto, “Coronary Hearth Disease Using Support Vector Machine,” J. Eng. Sci. Technol., vol. 16, no. 2, pp. 1370–1385, 2021.