A Comprehensive Review on Cancer Detection and Classification using Medical Images by Machine Learning and Deep Learning Models

Jayapradha J - SRM Institute of Science and Technology, Kattankulathur, India
Haw Su-Cheng - Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia
Palanichamy Naveen - Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia
Elham Abdulwahab Anaam - Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3-2.3061

Abstract


In day-to-day life, machine learning and deep learning plays a vital role in healthcare applications to predict various diseases such as cancer, heart attack, mental problem, Parkinson, etc. Among these diseases, cancer is the life-threatening disease that leads a human being to death. The primary aim of this study is to provide a quick overview of various cancers and provides a comprehensive overview of machine learning and deep learning techniques in the detection and classification of several types of cancers. The significance of machine learning and deep learning in detecting various cancers using medical images were concentrated in this study. It also discusses various machine learning and deep learning algorithms that lead to accurate classification of medical images, early diagnosis, and immediate treatment for the patients and explores the methodologies which has been used to predict the cancer with the help of low dose computer tomography to reduce cancer related deaths. As the study narrows down the research into lung cancer, it combats the findings limitations in lung cancer detection models and highlights the need for a deep study of novel cancer detection algorithms. In addition, the review also finds the role of setting up data in lung cancer and the potential of genetic markers in stabilizing the accuracy of machine learning models. Overall, this study gives valuable suggestions to achieve more accuracy in cancer detection and classification using machine learning and deep learning techniques.

 


Keywords


Machine Learning; Deep Learning; Healthcare; Cancer; Medical Images and Lung Cancer

Full Text:

PDF

References


J. A. Bachman, B. M. Gyori, and P. K. Sorger, “Automated assembly of molecular mechanisms at scale from text mining and curated databases,” Mol Syst Biol, vol. 19, no. 5, Oct. 2023, doi: 10.15252/msb.202211325.

P. Jurmeister et al., “Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases,” Sci Transl Med, vol. 11, no. 509, Oct. 2019, doi: 10.1126/scitranslmed.aaw8513.

A. E. Sloan et al., “ABTC-0904: targeting glioma stem cells in GBM: a phase 0/II study of hedgehog pathway inhibitor GDC-0449,” J Neurooncol, vol. 161, no. 1, pp. 33–43, Oct. 2023, doi: 10.1007/s11060-022-04193-3.

B. A. et al, Molecular biology of the cell . 2022.

F. Alharbi and A. Vakanski, “Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review,” Bioengineering, vol. 10, no. 2, p. 173, Oct. 2023, doi: 10.3390/bioengineering10020173.

S. Wu et al., “ASCancer Atlas: a comprehensive knowledgebase of alternative splicing in human cancers,” Nucleic Acids Res, vol. 51, no. D1, pp. D1196–D1204, Oct. 2023, doi: 10.1093/nar/gkac955.

K. Kobayashi, A. Bolatkan, S. Shiina, and R. Hamamoto, “Fully-Connected Neural Networks with Reduced Parameterization for Predicting Histological Types of Lung Cancer from Somatic Mutations,” Biomolecules, vol. 10, no. 9, p. 1249, Oct. 2020, doi: 10.3390/biom10091249.

J. Jayaram, Y. Kulkarni, L. V. Ganesh, P. Naveen, and E. A. Anaam, “Treatment Recommendation using BERT Personalization,” Journal of Informatics and Web Engineering, vol. 3, no. 3, pp. 41–62, Oct. 2024, doi: 10.33093/jiwe.2024.3.3.3.

S. Herath et al., “The Role of Circulating Biomarkers in Lung Cancer,” Front Oncol, vol. 11, Oct. 2022, doi: 10.3389/fonc.2021.801269.

M. Sinkala, “Mutational landscape of cancer-driver genes across human cancers,” Sci Rep, vol. 13, no. 1, p. 12742, Oct. 2023, doi: 10.1038/s41598-023-39608-2.

Y. Zhang et al., “Genetic Load and Potential Mutational Meltdown in Cancer Cell Populations,” Mol Biol Evol, vol. 36, no. 3, pp. 541–552, Oct. 2019, doi: 10.1093/molbev/msy231.

C. Henschke et al., “Perspective on Management of Low-Dose Computed Tomography Findings on Low-Dose Computed Tomography Examinations for Lung Cancer Screening. From the International Association for the Study of Lung Cancer Early Detection and Screening Committee,” Journal of Thoracic Oncology, vol. 19, no. 4, pp. 565–580, Oct. 2024, doi: 10.1016/j.jtho.2023.11.013.

A. Naik and D. R. Edla, “Lung Nodule Classification on Computed Tomography Images Using Deep Learning,” Wirel Pers Commun, vol. 116, no. 1, pp. 655–690, Oct. 2021, doi: 10.1007/s11277-020-07732-1.

I. Toumazis, M. Bastani, S. S. Han, and S. K. Plevritis, “Risk-Based lung cancer screening: A systematic review,” Lung Cancer, vol. 147, pp. 154–186, Oct. 2020, doi: 10.1016/j.lungcan.2020.07.007.

D. M. Abdullah and A. M. Abdulazeez, “Machine Learning Applications based on SVM Classification A Review,” Qubahan Academic Journal, vol. 1, no. 2, pp. 81–90, Oct. 2021, doi: 10.48161/qaj.v1n2a50.

R. V. Adiraju and S. Elias, “A survey on lung CT datasets and research trends,” Research on Biomedical Engineering, vol. 37, no. 2, pp. 403–418, Oct. 2021, doi: 10.1007/s42600-021-00138-3.

C. M. Rudin, E. Brambilla, C. Faivre-Finn, and J. Sage, “Small-cell lung cancer,” Nat Rev Dis Primers, vol. 7, no. 1, p. 3, Oct. 2021, doi: 10.1038/s41572-020-00235-0.

M. Mamun, A. Farjana, M. Al Mamun, and M. S. Ahammed, “Lung cancer prediction model using ensemble learning techniques and a systematic review analysis,” in 2022 IEEE World AI IoT Congress (AIIoT), IEEE, Oct. 2022, pp. 187–193. doi: 10.1109/AIIoT54504.2022.9817326.

R. Nooreldeen and H. Bach, “Current and Future Development in Lung Cancer Diagnosis,” Int J Mol Sci, vol. 22, no. 16, p. 8661, Oct. 2021, doi: 10.3390/ijms22168661.

J. R. Kratz et al., “Genetic and immunologic features of recurrent stage I lung adenocarcinoma,” Sci Rep, vol. 11, no. 1, p. 23690, Oct. 2021, doi: 10.1038/s41598-021-02946-0.

R. C. Hardie, A. T. Trout, J. R. Dillman, B. N. Narayanan, and A. A. Tanimoto, “Performance of Lung-Nodule Computer-Aided Detection Systems on Standard-Dose and Low-Dose Pediatric CT Scans: An Intraindividual Comparison,” American Journal of Roentgenology, Oct. 2024, doi: 10.2214/AJR.24.31972.

M. Oudkerk, S. Liu, M. A. Heuvelmans, J. E. Walter, and J. K. Field, “Lung cancer LDCT screening and mortality reduction — evidence, pitfalls and future perspectives,” Nat Rev Clin Oncol, vol. 18, no. 3, pp. 135–151, Oct. 2021, doi: 10.1038/s41571-020-00432-6.

A. Takamatsu, M. Ueno, K. Yoshida, T. Kobayashi, S. Kobayashi, and T. Gabata, “Performance of artificial intelligence-based software for the automatic detection of lung lesions on chest radiographs of patients with suspected lung cancer,” Jpn J Radiol, vol. 42, no. 3, pp. 291–299, Oct. 2024, doi: 10.1007/s11604-023-01503-1.

H. Jin, C. Yu, Z. Gong, R. Zheng, Y. Zhao, and Q. Fu, “Machine learning techniques for pulmonary nodule computer-aided diagnosis using CT images: A systematic review,” Biomed Signal Process Control, vol. 79, p. 104104, Oct. 2023, doi: 10.1016/j.bspc.2022.104104.

Q. Zeng, Y. Xie, Z. Lu, and Y. Xia, “A human-in-the-loop method for pulmonary nodule detection in CT scans,” Visual Intelligence, vol. 2, no. 1, p. 19, Oct. 2024, doi: 10.1007/s44267-024-00052-z.

C. Wang et al., “Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography,” Nat Med, Oct. 2024, doi: 10.1038/s41591-024-03211-3.

G. Sidorenkov et al., “Multi-source data approach for personalized outcome prediction in lung cancer screening: update from the NELSON trial,” Eur J Epidemiol, vol. 38, no. 4, pp. 445–454, Oct. 2023, doi: 10.1007/s10654-023-00975-9.

P. A. Grenier, “Cure Rate of Lung Cancer Diagnosed at Annual CT Screening,” Radiology, vol. 309, no. 2, Oct. 2023, doi: 10.1148/radiol.232698.

R. J. Suji, S. S. Bhadauria, and W. W. Godfrey, “A survey and taxonomy of 2.5D approaches for lung segmentation and nodule detection in CT images,” Comput Biol Med, vol. 165, p. 107437, Oct. 2023, doi: 10.1016/j.compbiomed.2023.107437.

C. C. Chai, W. H. Khoh, Y. H. Pang, and H. Y. Yap, “A Lung Cancer Detection with Pre-Trained CNN Models,” Journal of Informatics and Web Engineering, vol. 3, no. 1, pp. 41–54, Oct. 2024, doi: 10.33093/jiwe.2024.3.1.3.

A. Heidari, D. Javaheri, S. Toumaj, N. J. Navimipour, M. Rezaei, and M. Unal, “A new lung cancer detection method based on the chest CT images using Federated Learning and blockchain systems,” Artif Intell Med, vol. 141, p. 102572, Oct. 2023, doi: 10.1016/j.artmed.2023.102572.

M. Y. B. Murthy, A. Koteswararao, and M. S. Babu, “Adaptive fuzzy deformable fusion and optimized CNN with ensemble classification for automated brain tumor diagnosis,” Biomed Eng Lett, vol. 12, no. 1, pp. 37–58, Oct. 2022, doi: 10.1007/s13534-021-00209-5.

R. Mehrotra, M. A. Ansari, R. Agrawal, and R. S. Anand, “A Transfer Learning approach for AI-based classification of brain tumors,” Machine Learning with Applications, vol. 2, p. 100003, Oct. 2020, doi: 10.1016/j.mlwa.2020.100003.

M. M. Badža and M. Č. Barjaktarović, “Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network,” Applied Sciences, vol. 10, no. 6, p. 1999, Oct. 2020, doi: 10.3390/app10061999.

R. Hashemzehi, S. J. S. Mahdavi, M. Kheirabadi, and S. R. Kamel, “Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE,” Biocybern Biomed Eng, vol. 40, no. 3, pp. 1225–1232, Oct. 2020, doi: 10.1016/j.bbe.2020.06.001.

M. O. Khairandish, M. Sharma, V. Jain, J. M. Chatterjee, and N. Z. Jhanjhi, “A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images,” IRBM, vol. 43, no. 4, pp. 290–299, Oct. 2022, doi: 10.1016/j.irbm.2021.06.003.

T. Rahman and M. S. Islam, “MRI brain tumor detection and classification using parallel deep convolutional neural networks,” Measurement: Sensors, vol. 26, p. 100694, Oct. 2023, doi: 10.1016/j.measen.2023.100694.

J. Amin, M. Sharif, M. Raza, T. Saba, and M. A. Anjum, “Brain tumor detection using statistical and machine learning method,” Comput Methods Programs Biomed, vol. 177, pp. 69–79, Oct. 2019, doi: 10.1016/j.cmpb.2019.05.015.

M. Mir et al., “Detection and isolation of brain tumors in cancer patients using neural network techniques in MRI images,” Sci Rep, vol. 14, no. 1, p. 23341, Oct. 2024, doi: 10.1038/s41598-024-68567-5.

J. Amin, M. Sharif, M. Yasmin, and S. L. Fernandes, “A distinctive approach in brain tumor detection and classification using MRI,” Pattern Recognit Lett, vol. 139, pp. 118–127, Oct. 2020, doi: 10.1016/j.patrec.2017.10.036.

G. Kumawat, S. K. Vishwakarma, P. Chakrabarti, P. Chittora, T. Chakrabarti, and J. C.-W. Lin, “Prognosis of Cervical Cancer Disease by Applying Machine Learning Techniques,” Journal of Circuits, Systems and Computers, vol. 32, no. 01, Oct. 2023, doi: 10.1142/S0218126623500196.

J. Lu, E. Song, A. Ghoneim, and M. Alrashoud, “Machine learning for assisting cervical cancer diagnosis: An ensemble approach,” Future Generation Computer Systems, vol. 106, pp. 199–205, Oct. 2020, doi: 10.1016/j.future.2019.12.033.

N. Al Mudawi and A. Alazeb, “A Model for Predicting Cervical Cancer Using Machine Learning Algorithms,” Sensors, vol. 22, no. 11, p. 4132, Oct. 2022, doi: 10.3390/s22114132.

S. Fekri-Ershad and S. Ramakrishnan, “Cervical cancer diagnosis based on modified uniform local ternary patterns and feed forward multilayer network optimized by genetic algorithm,” Comput Biol Med, vol. 144, p. 105392, Oct. 2022, doi: 10.1016/j.compbiomed.2022.105392.

T. Vaiyapuri et al., “Modified metaheuristics with stacked sparse denoising autoencoder model for cervical cancer classification,” Computers and Electrical Engineering, vol. 103, p. 108292, Oct. 2022, doi: 10.1016/j.compeleceng.2022.108292.

P. Jiang et al., “A systematic review of deep learning-based cervical cytology screening: from cell identification to whole slide image analysis,” Artif Intell Rev, vol. 56, no. S2, pp. 2687–2758, Oct. 2023, doi: 10.1007/s10462-023-10588-z.

A. Ghoneim, G. Muhammad, and M. S. Hossain, “Cervical cancer classification using convolutional neural networks and extreme learning machines,” Future Generation Computer Systems, vol. 102, pp. 643–649, Oct. 2020, doi: 10.1016/j.future.2019.09.015.

C. A. M. Ramirez, M. Greenop, Y. A. Almoshawah, P. L. M. Hirsch, and I. U. Rehman, “Advancing cervical cancer diagnosis and screening with spectroscopy and machine learning,” Expert Rev Mol Diagn, vol. 23, no. 5, pp. 375–390, Oct. 2023, doi: 10.1080/14737159.2023.2203816.

L. Zhang, L. Lu, I. Nogues, R. M. Summers, S. Liu, and J. Yao, “DeepPap: Deep Convolutional Networks for Cervical Cell Classification,” IEEE J Biomed Health Inform, vol. 21, no. 6, pp. 1633–1643, Oct. 2017, doi: 10.1109/JBHI.2017.2705583.

Y. Song et al., “A deep learning based framework for accurate segmentation of cervical cytoplasm and nuclei,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Oct. 2014, pp. 2903–2906. doi: 10.1109/EMBC.2014.6944230.

J. Zhang and Y. Liu, “Cervical Cancer Detection Using SVM Based Feature Screening,” 2004, pp. 873–880. doi: 10.1007/978-3-540-30136-3_106.

F. Afza, M. Sharif, M. Mittal, M. A. Khan, and D. J. Hemanth, “A hierarchical three-step superpixels and deep learning framework for skin lesion classification,” Methods, vol. 202, pp. 88–102, Oct. 2022, doi: 10.1016/j.ymeth.2021.02.013.

D. Bi, D. Zhu, F. R. Sheykhahmad, and M. Qiao, “Computer-aided skin cancer diagnosis based on a New meta-heuristic algorithm combined with support vector method,” Biomed Signal Process Control, vol. 68, p. 102631, Oct. 2021, doi: 10.1016/j.bspc.2021.102631.

P. P. Tumpa and M. A. Kabir, “An artificial neural network based detection and classification of melanoma skin cancer using hybrid texture features,” Sensors International, vol. 2, p. 100128, 2021, doi: 10.1016/j.sintl.2021.100128.

E. M. Senan and M. E. Jadhav, “Analysis of dermoscopy images by using ABCD rule for early detection of skin cancer,” Global Transitions Proceedings, vol. 2, no. 1, pp. 1–7, Oct. 2021, doi: 10.1016/j.gltp.2021.01.001.

M. Toğaçar, Z. Cömert, and B. Ergen, “Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks,” Chaos Solitons Fractals, vol. 144, p. 110714, Oct. 2021, doi: 10.1016/j.chaos.2021.110714.

R. Mohakud and R. Dash, “Designing a grey wolf optimization based hyper-parameter optimized convolutional neural network classifier for skin cancer detection,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8, pp. 6280–6291, Oct. 2022, doi: 10.1016/j.jksuci.2021.05.012.

S. Saravanan, B. Heshma, A. V. A. Shanofer, and R. Vanithamani, “Skin cancer detection using dermoscope images,” Mater Today Proc, vol. 33, pp. 4823–4827, 2020, doi: 10.1016/j.matpr.2020.08.388.

D. C. Malo, Md. M. Rahman, J. Mahbub, and M. M. Khan, “Skin Cancer Detection using Convolutional Neural Network,” in 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, Oct. 2022, pp. 169–176. doi: 10.1109/CCWC54503.2022.9720751.

B. Harangi, “Skin lesion classification with ensembles of deep convolutional neural networks,” J Biomed Inform, vol. 86, pp. 25–32, Oct. 2018, doi: 10.1016/j.jbi.2018.08.006.

B. Shetty, R. Fernandes, A. P. Rodrigues, R. Chengoden, S. Bhattacharya, and K. Lakshmanna, “Skin lesion classification of dermoscopic images using machine learning and convolutional neural network,” Sci Rep, vol. 12, no. 1, p. 18134, Oct. 2022, doi: 10.1038/s41598-022-22644-9.

A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, Oct. 2017, doi: 10.1038/nature21056.

T. Kavitha et al., “Deep Learning Based Capsule Neural Network Model for Breast Cancer Diagnosis Using Mammogram Images,” Interdiscip Sci, vol. 14, no. 1, pp. 113–129, Oct. 2022, doi: 10.1007/s12539-021-00467-y.

M. Ragab, A. Albukhari, J. Alyami, and R. F. Mansour, “Ensemble Deep-Learning-Enabled Clinical Decision Support System for Breast Cancer Diagnosis and Classification on Ultrasound Images,” Biology (Basel), vol. 11, no. 3, p. 439, Oct. 2022, doi: 10.3390/biology11030439.

R. Sánchez-Cauce, J. Pérez-Martín, and M. Luque, “Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data,” Comput Methods Programs Biomed, vol. 204, p. 106045, Oct. 2021, doi: 10.1016/j.cmpb.2021.106045.

M. Kashif, K. R. Malik, S. Jabbar, and J. Chaudhry, “Application of machine learning and image processing for detection of breast cancer,” in Innovation in Health Informatics, Elsevier, 2020, pp. 145–162. doi: 10.1016/B978-0-12-819043-2.00006-X.

D. A. Ragab, M. Sharkas, S. Marshall, and J. Ren, “Breast cancer detection using deep convolutional neural networks and support vector machines,” PeerJ, vol. 7, p. e6201, Oct. 2019, doi: 10.7717/peerj.6201.

S. Khan, N. Islam, Z. Jan, I. U. Din, and J. J. P. C. Rodrigues, “A novel deep learning based framework for the detection and classification of breast cancer using transfer learning,” Pattern Recognit Lett, vol. 125, pp. 1–6, Oct. 2019, doi: 10.1016/j.patrec.2019.03.022.

S. Guan and M. Loew, “Using generative adversarial networks and transfer learning for breast cancer detection by convolutional neural networks,” in Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, P. R. Bak and P.-H. Chen, Eds., SPIE, Oct. 2019, p. 48. doi: 10.1117/12.2512671.

D. Selvathi and A. A. Poornila, “Deep Learning Techniques for Breast Cancer Detection Using Medical Image Analysis,” 2018, pp. 159–186. doi: 10.1007/978-3-319-61316-1_8.

S. A. Mojarad, S. S. Dlay, W. L. Woo, and G. V Sherbet, “Breast cancer prediction and cross validation using multilayer perceptron neural networks,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), IEEE, Oct. 2010, pp. 760–764. doi: 10.1109/CSNDSP16145.2010.5580318.

A. Das, M. N. Mohanty, P. K. Mallick, P. Tiwari, K. Muhammad, and H. Zhu, “Breast cancer detection using an ensemble deep learning method,” Biomed Signal Process Control, vol. 70, p. 103009, Oct. 2021, doi: 10.1016/j.bspc.2021.103009.

A. K. Ali, A. M. Abdullah, and S. F. Raheem, “Impact the Classes’ Number on the Convolutional Neural Networks Performance for Image Classification,” International Journal of Advanced Science Computing and Engineering, vol. 6, no. 2, pp. 64–69, Oct. 2024, doi: 10.62527/ijasce.6.2.204.

A. LG and E. AT, “Using Three Machine Learning Techniques for Predicting Breast Cancer Recurrence,” J Health Med Inform, vol. 04, no. 02, 2013, doi: 10.4172/2157-7420.1000124.

Md. A. H. Sujon and H. Mustafa, “Comparative Study of Machine Learning Models on Multiple Breast Cancer Datasets,” International Journal of Advanced Science Computing and Engineering, vol. 5, no. 1, pp. 15–24, Oct. 2023, doi: 10.62527/ijasce.5.1.105.

D. Wang, J.-R. Li, Y.-H. Zhang, L. Chen, T. Huang, and Y.-D. Cai, “Identification of Differentially Expressed Genes between Original Breast Cancer and Xenograft Using Machine Learning Algorithms,” Genes (Basel), vol. 9, no. 3, p. 155, Oct. 2018, doi: 10.3390/genes9030155.

S. K. Mohamed, N. A. Sakr, and N. A. Hikal, “A Review of Breast Cancer Classification and Detection Techniques,” International Journal of Advanced Science Computing and Engineering, vol. 3, no. 3, pp. 128–139, Oct. 2021, doi: 10.62527/ijasce.3.3.55.

C. L. A. Dewald et al., “Automated Classification of Free-Text Radiology Reports: Using Different Feature Extraction Methods to Identify Fractures of the Distal Fibula,” RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, vol. 195, no. 08, pp. 713–719, Oct. 2023, doi: 10.1055/a-2061-6562.

D. Karimi et al., “Learning to Detect Brain Lesions from Noisy Annotations,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), IEEE, Oct. 2020, pp. 1910–1914. doi: 10.1109/ISBI45749.2020.9098599.

M. Z. Khaliki and M. S. Başarslan, “Brain tumor detection from images and comparison with transfer learning methods and 3-layer CNN,” Sci Rep, vol. 14, no. 1, p. 2664, Oct. 2024, doi: 10.1038/s41598-024-52823-9.

W. Bismi, D. Riana, and A. S. Hewiz, “Disease Identification on Fig Leaf Images Using Deep Learning Method,” International Journal of Advanced Science Computing and Engineering, vol. 6, no. 2, pp. 57–63, Oct. 2024, doi: 10.62527/ijasce.6.2.203.

D. Meidelfi, - Hendrick, F. Sukma, and S. Y. Kharisma, “Analysis of Eye Disease Classification by Comparison of the Random Forest Method and K-Nearest Neighbor Method,” International Journal of Advanced Science Computing and Engineering, vol. 5, no. 2, pp. 136–145, Oct. 2023, doi: 10.62527/ijasce.5.2.151.

J.-R. Lee, K.-W. Ng, and Y.-J. Yoong, “Face and Facial Expressions Recognition System for Blind People Using ResNet50 Architecture and CNN,” Journal of Informatics and Web Engineering, vol. 2, no. 2, pp. 284–298, Oct. 2023, doi: 10.33093/jiwe.2023.2.2.20.

Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep Learning in Physical Layer Communications,” IEEE Wirel Commun, vol. 26, no. 2, pp. 93–99, Oct. 2019, doi: 10.1109/MWC.2019.1800601.

W. Meyerson, J. Leisman, F. C. P. Navarro, and M. Gerstein, “Origins and characterization of variants shared between databases of somatic and germline human mutations,” BMC Bioinformatics, vol. 21, no. 1, p. 227, Dec. 2020, doi: 10.1186/s12859-020-3508-8.

P. A. S. Rani and N. S. Singh, “Paddy Leaf Symptom-based Disease Classification Using Deep CNN with ResNet-50,” International Journal of Advanced Science Computing and Engineering, vol. 4, no. 2, pp. 88–94, Oct. 2022, doi: 10.62527/ijasce.4.2.83.

R. L. Siegel, K. D. Miller, N. S. Wagle, and A. Jemal, “Cancer statistics, 2023,” CA Cancer J Clin, vol. 73, no. 1, pp. 17–48, Oct. 2023, doi: 10.3322/caac.21763.

Y. H. Gan, S. Y. Ooi, Y. H. Pang, Y. H. Tay, and Q. F. Yeo, “Facial Skin Analysis in Malaysians using YOLOv5: A Deep Learning Perspective,” Journal of Informatics and Web Engineering, vol. 3, no. 2, pp. 1–18, Oct. 2024, doi: 10.33093/jiwe.2023.3.2.1.

J. S. A. Tan, Z. C. Embi, and N. Hashim, “Comparison of Machine Learning Methods for Calories Burn Prediction,” Journal of Informatics and Web Engineering, vol. 3, no. 1, pp. 182–191, Oct. 2024, doi: 10.33093/jiwe.2024.3.1.12.

H. Zeng et al., “Cancer survival statistics in China 2019–2021: a multicenter, population-based study,” Journal of the National Cancer Center, vol. 4, no. 3, pp. 203–213, Sep. 2024, doi: 10.1016/j.jncc.2024.06.005.

A. M. Sebastian and D. Peter, “Artificial Intelligence in Cancer Research: Trends, Challenges and Future Directions,” Life, vol. 12, no. 12, p. 1991, Nov. 2022, doi: 10.3390/life12121991.

R. L. Siegel, A. N. Giaquinto, and A. Jemal, “Cancer statistics, 2024,” CA Cancer J Clin, vol. 74, no. 1, pp. 12–49, Jan. 2024, doi: 10.3322/caac.21820.