Datasets for Artificial Intelligence-based Spine Analysis: A Scoping Review

Muhammad Shahrul Zaim Ahmad - Multimedia University, 75450 Melaka, Malaysia
Nor Azlina Ab. Aziz - Multimedia University, 75450 Melaka, Malaysia
Lim Heng Siong - Multimedia University, 75450 Melaka, Malaysia
Anith Khairunnisa Ghazali - Multimedia University, 75450 Melaka, Malaysia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.4.3042

Abstract


The advancement of artificial intelligence (AI) and intense learning is key to automating the diagnosis and inspection of spinal-related pathologies. This automation reduces the need for human manual analysis. Reducing the burden on the healthcare system and the risk of human error. Spine medical images have several modalities, such as X-rays, computed tomography (CT), and magnetic resonance imaging (MRI). Each modality captured the vertebral features differently. The choice of modality affects the performance of the applied algorithms. It is also important to note that a large amount of data is better for training AI algorithms, profound learning algorithms. However, medical images are often limited owing to privacy concerns and the lack of open-source databases. Therefore, it is essential to identify data sources to ensure the success of AI projects for spine analysis. This review discusses available datasets and their characteristics, such as modality, size, and labels.  Additionally, the demographics and applications of the data were also discussed. The platform utilized to obtain related literature in this study is Lens. A scoping review was used in this study to extract information from related literature. The number of literature included in this study is 39. A total of 43 datasets, which include 32 private and 11 public datasets, are discussed in this review. This work will benefit researchers and developers developing an AI-based spinal analysis system.


Keywords


Spine; spine analysis; dataset; medical image; artificial intelligence

Full Text:

PDF

References


O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int J Comput Vis, vol. 115, no. 3, 2015, doi: 10.1007/s11263-015-0816-y.

T. Y. Lin et al., “Microsoft COCO: Common objects in context,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014. doi: 10.1007/978-3-319-10602-1_48.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int J Comput Vis, vol. 88, no. 2, 2010, doi: 10.1007/s11263-009-0275-4.

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,” Oct. 2007.

A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 and CIFAR-100 datasets,” 2009.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

M. A. Saleh, A. E. A. Ali, K. Ahmed, and A. M. Sarhan, “A Brief Analysis of Multimodal Medical Image Fusion Techniques,” 2023. doi: 10.3390/electronics12010097.

X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases,” in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017. doi: 10.1109/CVPR.2017.369.

E. Mahamud, N. Fahad, M. Assaduzzaman, S. M. Zain, K. O. M. Goh, and M. K. Morol, “An explainable artificial intelligence model for multiple lung diseases classification from chest X-ray images using fine-tuned transfer learning,” Decision Analytics Journal, vol. 12, Sep. 2024, doi: 10.1016/j.dajour.2024.100499.

M. K. Balwant, “A Review on Convolutional Neural Networks for Brain Tumor Segmentation: Methods, Datasets, Libraries, and Future Directions,” 2022. doi: 10.1016/j.irbm.2022.05.002.

K. Clark et al., “The cancer imaging archive (TCIA): Maintaining and operating a public information repository,” J Digit Imaging, vol. 26, no. 6, 2013, doi: 10.1007/s10278-013-9622-7.

C. C. Chai, W. H. Khoh, Y. H. Pang, and H. Y. Yap, “A Lung Cancer Detection with Pre-Trained CNN Models,” Journal of Informatics and Web Engineering, vol. 3, no. 1, 2024, doi: 10.33093/jiwe.2024.3.1.3.

M. Ali, F. Khan, M. N. Atta, A. Khan, and A. Khan, “Hybrid Crow Search and RBFNN: A Novel Approach to Medical Data Classification,” Journal of Informatics and Web Engineering, vol. 3, no. 1, pp. 252–264, Feb. 2024, doi: 10.33093/jiwe.2024.3.1.17.

B. Cassidy, C. Kendrick, A. Brodzicki, J. Jaworek-Korjakowska, and M. H. Yap, “Analysis of the ISIC image datasets: Usage, benchmarks and recommendations,” Med Image Anal, vol. 75, 2022, doi: 10.1016/j.media.2021.102305.

S. Abdul Gafoor, N. Sampathila, M. Madhushankara, and K. S. Swathi, “Deep learning model for detection of COVID-19 utilizing the chest X-ray images,” Cogent Eng, vol. 9, no. 1, 2022, doi: 10.1080/23311916.2022.2079221.

M. M. M. Alghamdi, M. Y. H. Dahab, and N. H. A. Alazwary, “Enhancing deep learning techniques for the diagnosis of the novel coronavirus (COVID-19) using X-ray images,” Cogent Eng, vol. 10, no. 1, 2023, doi: 10.1080/23311916.2023.2181917.

A. Tiwari, T. S. Sharan, S. Sharma, and N. Sharma, “Deep learning-based automated multiclass classification of chest X-rays into Covid-19, normal, bacterial pneumonia and viral pneumonia,” Cogent Eng, vol. 9, no. 1, 2022, doi: 10.1080/23311916.2022.2105559.

M. M. M. Alghamdi and M. Y. H. Dahab, “Diagnosis of COVID-19 from X-ray images using deep learning techniques,” Cogent Eng, vol. 9, no. 1, 2022, doi: 10.1080/23311916.2022.2124635.

J. J. Ng, K. O. M. Goh, and C. Tee, “Traffic Impact Assessment System using Yolov5 and ByteTrack,” Journal of Informatics and Web Engineering, vol. 2, no. 2, 2023, doi: 10.33093/jiwe.2023.2.2.13.

M. S. Z. Ahmad, N. A. Ab. Aziz, and A. K. Ghazali, “Development of Automated Attendance System Using Pretrained Deep Learning Models,” International Journal on Robotics, Automation and Sciences, vol. 6, no. 1, pp. 6–12, Apr. 2024, doi: 10.33093/ijoras.2024.6.1.2.

Y. Cui, J. Zhu, Z. Duan, Z. Liao, S. Wang, and W. Liu, “Artificial Intelligence in Spinal Imaging: Current Status and Future Directions,” Sep. 01, 2022, MDPI. doi: 10.3390/ijerph191811708.

J. Zhang et al., “Differentiation of acute and chronic vertebral compression fractures using conventional CT based on deep transfer learning features and hand-crafted radiomics features.,” BMC Musculoskelet Disord, vol. 24, no. 1, p. 165, 2023, doi: 10.1186/s12891-023-06281-5.

Y. Yahara et al., “A deep convolutional neural network to predict the curve progression of adolescent idiopathic scoliosis: a pilot study.,” BMC Musculoskelet Disord, vol. 23, no. 1, p. 610, 2022, doi: 10.1186/s12891-022-05565-6.

J. Qin, X. Wang, D. Mi, Q. Wu, Z. He, and Y. Tang, “CI-UNet: Application of Segmentation of Medical Images of the Human Torso,” Applied Sciences, vol. 13, no. 12, p. 7293, 2023, doi: 10.3390/app13127293.

S. Iyer, A. Blair, C. White, L. Dawes, D. Moses, and A. Sowmya, “Vertebral compression fracture detection using imitation learning, patch based convolutional neural networks and majority voting,” Inform Med Unlocked, vol. 38, p. 101238, 2023, doi: 10.1016/j.imu.2023.101238.

A. C. Tricco et al., “PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation,” 2018. doi: 10.7326/M18-0850.

Y. Pan et al., “Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening”, doi: 10.1007/s00330-020-06679-y/Published.

K. Murata et al., “Artificial intelligence for the detection of vertebral fractures on plain spinal radiography,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-76866-w.

Y. Li et al., “Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning”, doi: 10.1007/s00330-021-08014-5/Published.

H. Liebl et al., “A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data,” Sci Data, vol. 8, no. 1, Dec. 2021, doi: 10.1038/s41597-021-01060-0.

P. Cheng, Y. Yang, H. Yu, and Y. He, “Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-01296-1.

K. U. Lewandrowski et al., “Feasibility of deep learning algorithms for reporting in routine spine magnetic resonance imaging,” Int J Spine Surg, vol. 14, pp. S86–S97, Dec. 2020, doi: 10.14444/7131.

A. Cina et al., “2-step deep learning model for landmarks localization in spine radiographs.,” Sci Rep, vol. 11, no. 1, p. 9482, 2021, doi: 10.1038/s41598-021-89102-w.

L. R. Yeh et al., “A deep learning-based method for the diagnosis of vertebral fractures on spine MRI: retrospective training and validation of ResNet,” European Spine Journal, vol. 31, no. 8, pp. 2022–2030, Aug. 2022, doi: 10.1007/s00586-022-07121-1.

G. W. Lee, H. Shin, and M. C. Chang, “Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph,” BMC Neurol, vol. 22, no. 1, Dec. 2022, doi: 10.1186/s12883-022-02670-w.

X. Liu et al., “Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network,” Insights Imaging, vol. 12, no. 1, Dec. 2021, doi: 10.1186/s13244-021-01044-z.

Z. Zhang et al., “Ageing and degeneration analysis using ageing-related dynamic attention on lateral cephalometric radiographs,” NPJ Digit Med, vol. 5, no. 1, Dec. 2022, doi: 10.1038/s41746-022-00681-y.

S. Li et al., “MRI-based radiomics nomogram for differentiation of solitary metastasis and solitary primary tumor in the spine,” BMC Med Imaging, vol. 23, no. 1, Dec. 2023, doi: 10.1186/s12880-023-00978-8.

H. Li et al., “The psc-CVM assessment system: A three-stage type system for CVM assessment based on deep learning,” BMC Oral Health, vol. 23, no. 1, Dec. 2023, doi: 10.1186/s12903-023-03266-7.

E. E. Yilizati-Yilihamu, J. Yang, Z. Yang, F. Rong, and S. Feng, “A spine segmentation method based on scene aware fusion network,” BMC Neurosci, vol. 24, no. 1, Dec. 2023, doi: 10.1186/s12868-023-00818-z.

National Natural Science Foundation of China, “National Natural Science Foundation of China,” https://www.nsfc.gov.cn/english/site_1/index.html. Accessed: Jun. 04, 2024. [Online]. Available: https://www.nsfc.gov.cn/english/site_1/index.html

Y. Chen et al., “VertXNet: an ensemble method for vertebral body segmentation and identification from cervical and lumbar spinal X-rays,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-023-49923-3.

C. H. An, J. S. Lee, J. S. Jang, and H. C. Choi, “Part Affinity Fields and CoordConv for Detecting Landmarks of Lumbar Vertebrae and Sacrum in X-ray Images,” Sensors, vol. 22, no. 22, Nov. 2022, doi: 10.3390/s22228628.

M. U. Saeed, N. Dikaios, A. Dastgir, G. Ali, M. Hamid, and F. Hajjej, “An Automated Deep Learning Approach for Spine Segmentation and Vertebrae Recognition Using Computed Tomography Images,” Diagnostics, vol. 13, no. 16, Aug. 2023, doi: 10.3390/diagnostics13162658.

J. Nicolaes et al., “External validation of a convolutional neural network algorithm for opportunistically detecting vertebral fractures in routine CT scans,” Osteoporosis International, vol. 35, no. 1, pp. 143–152, Jan. 2024, doi: 10.1007/s00198-023-06903-7.

E. Schonfeld and A. Veeravagu, “Demonstrating the successful application of synthetic learning in spine surgery for training multi–center models with increased patient privacy,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-39458-y.

L. Li et al., “ICUnet++: an Inception-CBAM network based on Unet++ for MR spine image segmentation,” International Journal of Machine Learning and Cybernetics, vol. 14, no. 10, pp. 3671–3683, Oct. 2023, doi: 10.1007/s13042-023-01857-y.

F. Natalia, J. C. Young, N. Afriliana, H. Meidia, R. E. Yunus, and S. Sudirman, “Automated selection of mid-height intervertebral disc slice in traverse lumbar spine MRI using a combination of deep learning feature and machine learning classifier,” PLoS One, vol. 17, no. 1 January, Jan. 2022, doi: 10.1371/journal.pone.0261659.

R. S. Del Lama, R. M. Candido, N. S. Chiari-Correia, M. H. Nogueira-Barbosa, P. M. de Azevedo-Marques, and R. Tinós, “Computer-Aided Diagnosis of Vertebral Compression Fractures Using Convolutional Neural Networks and Radiomics.,” J Digit Imaging, vol. 35, no. 3, pp. 446–458, 2022, doi: 10.1007/s10278-022-00586-y.

A. Al-kubaisi and N. N. Khamiss, “A Transfer Learning Approach for Lumbar Spine Disc State Classification,” Electronics (Basel), vol. 11, no. 1, p. 85, 2021, doi: 10.3390/electronics11010085.

D. Baur et al., “Analysis of the paraspinal muscle morphology of the lumbar spine using a convolutional neural network (CNN),” European Spine Journal, vol. 31, no. 3, pp. 774–782, Mar. 2022, doi: 10.1007/s00586-021-07073-y.

P. Oura, N. Korpinen, A. L. Machnicki, and J. A. Junno, “Deep learning in sex estimation from a peripheral quantitative computed tomography scan of the fourth lumbar vertebra—a proof-of-concept study,” Forensic Sci Med Pathol, vol. 19, no. 4, pp. 534–540, Dec. 2023, doi: 10.1007/s12024-023-00586-6.

P. Fervers et al., “Dual-Energy CT, Virtual Non-Calcium Bone Marrow Imaging of the Spine: An AI-Assisted, Volumetric Evaluation of a Reference Cohort with 500 CT Scans,” Diagnostics, vol. 12, no. 3, Mar. 2022, doi: 10.3390/diagnostics12030671.

Y. Maeda, T. Nagura, M. Nakamura, and K. Watanabe, “Automatic measurement of the Cobb angle for adolescent idiopathic scoliosis using convolutional neural network,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-41821-y.

W. Mbarki, M. Bouchouicha, F. T. Tshienda, E. Moreau, and M. Sayadi, “Herniated lumbar disc generation and classification using cycle generative adversarial networks on axial view mri,” Electronics (Switzerland), vol. 10, no. 8, Apr. 2021, doi: 10.3390/electronics10080982.

Y. Xu, Y. Li, and B. S. Shin, “Medical image processing with contextual style transfer,” Human-centric Computing and Information Sciences, vol. 10, no. 1, Dec. 2020, doi: 10.1186/s13673-020-00251-9.

C. Vergari, W. Skalli, and L. Gajny, “A convolutional neural network to detect scoliosis treatment in radiographs A convolutional neural network to detect scoliosis treatment in radiographs A convolutional neural network to detect scoliosis treatment in radiographs,” Int J Comput Assist Radiol Surg, vol. 15, 2020, doi: 10.1007/s11548-020-02173-4ï.

P. Tavana, M. Akraminia, A. Koochari, and A. Bagherifard, “Classification of spinal curvature types using radiography images: deep learning versus classical methods.,” Artif Intell Rev, vol. 56, no. 11, pp. 1–13291, 2023, doi: 10.1007/s10462-023-10480-w.

M. X. Wang, J. K. Kim, C. R. Kim, and M. C. Chang, “Deep Learning Algorithm Trained on Oblique Cervical Radiographs to Predict Outcomes of Transforaminal Epidural Steroid Injection for Pain from Cervical Foraminal Stenosis,” Pain Ther, vol. 13, no. 1, pp. 173–183, Feb. 2024, doi: 10.1007/s40122-023-00573-3.

S. Na et al., “Development and validation of an ensemble artificial intelligence model for comprehensive imaging quality check to classify body parts and contrast enhancement,” BMC Med Imaging, vol. 22, no. 1, Dec. 2022, doi: 10.1186/s12880-022-00815-4.

Y. Lin, S. C. W. Chan, H. Y. Chung, K. H. Lee, and P. Cao, “A deep neural network for MRI spinal inflammation in axial spondyloarthritis,” European Spine Journal, 2024, doi: 10.1007/s00586-023-08099-0.

F. Varçın, H. Erbay, E. Cetin, İ. Çetin, and T. Kültür, “End-To-End Computerized Diagnosis of Spondylolisthesis Using Only Lumbar X-rays,” J Digit Imaging, vol. 34, no. 1, pp. 85–95, 2021, doi: 10.1007/s10278-020-00402-5.

A. Nakamoto et al., “Three-dimensional conditional generative adversarial network-based virtual thin-slice technique for the morphological evaluation of the spine,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-16637-x.

J. Löchel et al., “Deep learning algorithm for fully automated measurement of sagittal balance in adult spinal deformity,” European Spine Journal, 2024, doi: 10.1007/s00586-023-08109-1.

Y. Geng et al., “Deep Learning-Based Self-Efficacy X-Ray Images in the Evaluation of Rheumatoid Arthritis Combined with Osteoporosis Nursing,” Sci Program, vol. 2021, 2021, doi: 10.1155/2021/9959617.

Y. Chen, X. Sun, X. Sui, Y. Li, and Z. Wang, “Application of bone alkaline phosphatase and 25-oxhydryl-vitamin D in diagnosis and prediction of osteoporotic vertebral compression fractures,” J Orthop Surg Res, vol. 18, no. 1, Dec. 2023, doi: 10.1186/s13018-023-04144-2.