MobileNet Backbone Based Approach for Quality Classification of Straw Mushrooms (Volvariella volvacea) Using Convolutional Neural Networks (CNN)

Bayu Priyatna - University of Buana Perjuangan Karawang, Karawang, 41361, Indonesia
Titik Khawa Abdul Rahman - Asia e University, 47500 Subang Jaya, Selangor, Malaysia
April Hananto - University of Buana Perjuangan Karawang, Karawang, 41361, Indonesia
Agustia Hananto - University of Buana Perjuangan Karawang, Karawang, 41361, Indonesia
Aviv Rahman - University of Widyagama, Malang, 65142, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3-2.2998

Abstract


Straw mushrooms (Volvariella volvacea) are a crucial commodity in Indonesia, with consumption on the rise due to their nutritional value and increasing demand for healthy food options. Despite this growth, farmers often struggle with accurately assessing the post-harvest quality of mushrooms according to market standards, which can diminish their economic value. Manual classification, which relies on human judgment and estimation, is frequently inefficient and susceptible to errors such as inconsistencies in quality assessment and limitations in detecting subtle variations. This study aims to automate the classification of straw mushrooms based on quality using deep learning, specifically by employing MobileNetv3 as the backbone for classifying mushrooms based on their shape and color by the Indonesian National Standards (SNI). The MobileNet-CNN Backbone model implemented in this study demonstrated exceptional performance, achieving a classification accuracy of 99%, thus proving its effectiveness and reliability in replacing traditional manual methods. The results of this research indicate significant potential for applying deep learning models to enhance the efficiency and precision of mushroom quality assessment. However, there remain challenges that require further development, including adding more diverse background data, improving image resolution, and refining data augmentation techniques. Addressing these challenges is essential for achieving optimal results in varying environmental conditions, ensuring the model can be broadly implemented in the agricultural industry. Such advancements could lead to more consistent and accurate quality assessments, benefiting producers and consumers in the mushroom market.

Keywords


Straw Mushroom, Quality Classification, Deep Learning, MobileNetv3, Image Processing, Smart Agriculture

Full Text:

PDF

References


Suhaeni, W. Rianti, and Y. Umaidah, “Value Chain Model for Straw Mushroom (Volvariella volvacea) Agribusiness Performance in Karawang, Indonesia,” Jordan J. Biol. Sci., vol. 14, no. 5, pp. 991–997, 2021, doi: 10.54319/JJBS/140517.

A. P. PURWANTO, A. A. L. I. ALI, and N. H. HERAWATI, “Kajian mutu gizi bakso berbasis daging sapi dan jamur merang (Volvariella volvaceae),” Sagu, vol. 14, no. 2, pp. 1–8, 2015.

P. Teknologi, M. Pertanian, and J. Pertanian, “Potensi Jamur Pangan sebagai Pangan Fungsional untuk Meningkatkan Daya Tahan Tubuh Manusia,” vol. 6, no. 1, pp. 45–58, 2022.

I. Fadhli, “Strategi Pengembangan Usaha Budidaya Jamur Merang Pada Kademangan Mushroom Farm , Tangerang Selatan Skripsi Ibrohim Fadhli 2018 M / 1439 H,” 2018.

Hoerunnisa, “Pengaruh Perbedaan Suhu Antar Rak Bedengan Terhadap Hasil Produksi dan Pendapatan Usahatani Jamur Merang (Volvariella volvaceae) Dengan Media Kapas (Suatu Kasus Usaha Budidaya Jamur Merang di Kademangan Mushroom Farm Kota Tangerang Selatan),” J. Agribisnis Terpadu, Desember, vol. 11, no. 2, pp. 226–241, 2018.

D. Maulana, J. Indra, and ..., “Pengembangan Sistem Kumbung Jamur Dengan Nodemcu Esp8266 Menggunakan Metode Fuzzy Logic,” … Student J. …, vol. III, pp. 235–245, 2022, [Online]. Available: http://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/445%0Ahttps://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/download/445/359

N. Auf, R. Und, E. With, and P. To, IbM, Petani Jamur di Kawasanrawan Bencana Erupsi Merapi. 2016.

L. T. Siti Sarah Melani, Lies Sulistyowati, “Sources Of Risk and Risk Mitigation of Merang Mushroom (Volvariella Volvaceae) In Jatisari District, Karawang Regency,” vol. 7, no. 2, pp. 1756–1769, 2021.

S. N. Indonesia and B. S. Nasional, “Jamur merang segar,” 2013.

E. Kantikowati, R. Haris, Karya, and S. Anwar, “Alur Pemasaran Jamur Merang di Desa Cirejag Kecamatan Jatisari Kabupaten Karawang,” Paspalum J. Ilm. Pertan., vol. 6, no. 2, pp. 134–141, 2018.

M. Zia, S. Ahmed, and A. Kumar, “Anaerobic digestion (AD) of fruit and vegetable market waste (FVMW): potential of FVMW, bioreactor performance, co-substrates, and pre-treatment techniques,” Biomass Convers. Biorefinery, vol. 12, no. 8, pp. 3573–3592, 2022.

H. Rahman et al., “IoT enabled mushroom farm automation with Machine Learning to classify toxic mushrooms in Bangladesh,” J. Agric. Food Res., vol. 7, no. January, p. 100267, 2022, doi: 10.1016/j.jafr.2021.100267.

V. Moysiadis, G. Kokkonis, S. Bibi, I. Moscholios, N. Maropoulos, and P. Sarigiannidis, “Monitoring Mushroom Growth with Machine Learning,” Agric., vol. 13, no. 1, pp. 1–17, 2023, doi: 10.3390/agriculture13010223.

Y. Wu, Y. Sun, S. Zhang, X. Liu, K. Zhou, and J. Hou, “A size-grading method of antler mushrooms using yolov5 and pspnet,” Agronomy, vol. 12, no. 11, p. 2601, 2022.

C. P. Lu, J. J. Liaw, T. C. Wu, and T. F. Hung, “Development of a mushroom growth measurement system applying deep learning for image recognition,” Agronomy, vol. 9, no. 1, Jan. 2019, doi: 10.3390/agronomy9010032.

W.-Y. Hsu and H.-C. Cheng, “A fast and effective system for detection of neonatal jaundice with a dynamic threshold white balance algorithm,” in Healthcare, MDPI, 2021, p. 1052.

M. Afifi and M. S. Brown, “Deep white-balance editing,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 1394–1403, 2020, doi: 10.1109/CVPR42600.2020.00147.

V. Vonikakis, “Combining Gray-World assumption, White-Point correction and power transformation for automatic white balance,” no. January, 2015.

D. A. Pramudhita, F. Azzahra, I. K. Arfat, R. Magdalena, and S. Saidah, “Strawberry Plant Diseases Classification Using CNN Based on MobileNetV3-Large and EfficientNet-B0 Architecture,” vol. 9, no. 3, pp. 522–534, 2023, doi: 10.26555/jiteki.v9i3.26341.

R. Zhang, Y. Yuan, X. Meng, T. Liu, A. Zhang, and H. Lei, “A multitask model based on MobileNetV3 for fine-grained classification of jujube varieties,” J. Food Meas. Charact., vol. 17, no. 5, pp. 4305–4317, 2023, doi: 10.1007/s11694-023-01958-w.

A. D. Nugroho and W. M. Baihaqi, “Improved YOLOv5 with Backbone Replacement to MobileNet V3s for School Attribute Detection,” vol. 8, no. 3, pp. 1944–1954, 2023.

S. J. Pan, “Transfer learning,” Learning, vol. 21, pp. 1–2, 2020.

Z. Chen, S. Kommrusch, and M. Monperrus, “Neural Transfer Learning for Repairing Security Vulnerabilities in C Code,” IEEE Trans. Softw. Eng., vol. 49, no. 1, pp. 147–165, 2023, doi: 10.1109/TSE.2022.3147265.

S. L. Keeley, D. M. Zoltowski, M. C. Aoi, and J. W. Pillow, “Modeling statistical dependencies in multi-region spike train data,” Curr. Opin. Neurobiol., vol. 65, pp. 194–202, 2020.

S. S. Patil, S. S. Pardeshi, and A. D. Patange, “Health Monitoring of Milling Tool Inserts Using CNN Architectures Trained by Vibration Spectrograms,” 2023, doi: 10.32604/cmes.2023.025516.

I. Systems, N. Architecture, and N. Architecture, “Comments on ‘“ MLCM : Multi-Label Confusion Matrix ,”’” ACCESS.2023.326767 2 IEEE, vol. 11, no. February, 2023, doi: 10.1109/ACCESS.2023.3267672.

H. Panwar, P. K. Gupta, M. K. Siddiqui, R. Morales-Menendez, P. Bhardwaj, and V. Singh, “A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images,” Chaos, Solitons & Fractals, vol. 140, p. 110190, 2020.

F. Zhu, Y. Sun, Y. Zhang, W. Zhang, and J. Qi, “An Improved MobileNetV3 Mushroom Quality Classification Model Using Images with Complex Backgrounds,” Agronomy, vol. 13, no. 12, 2023, doi: 10.3390/agronomy13122924.

D. Krstinić, M. Braović, L. Šerić, and D. Božić-Štulić, “Multi-label classifier performance evaluation with confusion matrix,” Comput. Sci. Inf. Technol., vol. 1, pp. 1–14, 2020.

A. Arias-duart and J. M. Alonso-moral, “A Confusion Matrix for Evaluating Feature Attribution Methods,” Proc. is available IEEE Xplore, no. Cv, pp. 3709–3714, 2023.

D. Valero-carreras, J. Alcaraz, and M. Landete, “Computers and Operations Research Comparing two SVM models through different metrics based on the confusion matrix,” vol. 152, no. December 2022, 2023.

D. Chicco and G. Jurman, “The Matthews correlation coefficient ( MCC ) should replace the ROC AUC as the standard metric for assessing binary classification,” BioData Min., pp. 1–23, 2023, doi: 10.1186/s13040-023-00322-4.

H. Santoso, I. Hanif, and H. Magdalena, “A Hybrid Model for Dry Waste Classification using Transfer Learning and Dimensionality Reduction,” vol. 8, no. May, 2024.