Deep Learning Approach EEG Signal Classification

Kai Liang Lew - Multimedia University, 75450 Malacca, Malaysia
Kok Swee Sim - Multimedia Multimedia University, 75450 Malacca, Malaysia
Zehong Ting - Multimedia University, 75450 Malacca, Malaysia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3-2.2959

Abstract


The introduction of deep learning technology has greatly benefited the neuroscience field by improving the electroencephalogram (EEG) signal analysis. These technologies have greatly improved the understanding of complex brain activity by interpreting the signal as normal or abnormal. The EEG signal requires expertise to interpret the pattern, and only then can the EEG signal be differentiated as normal or abnormal. However, some variations always complicate the analysis of the EEG signal by creating noise in the signal. This paper introduces a deep learning model, NeuroNetFlex (NFF), to classify the EEG signal as normal or abnormal. The NNF is designed to classify the EEG signal by using multiple combinations of modules such as one-dimension convolutional neural networks (1D-CNN), Squeeze-and-Excitation (SE) blocks, and the parallel processing fusion of recurrent neural networks (RNN), Long Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) layers are used to analyze the temporal features of the EEG data and learn the signal pattern. The performance of the NNF was evaluated using evaluation metrics such as accuracy, precision, recall, and f1 score. The model achieved an accuracy of 75.33%, a precision of 76.39%, a recall of 75.33%, and an F1 score of 75.08% with a training time of 16.88 minutes, outperforming the existing models. These results demonstrate the promising potential of the NNF to significantly improve the analysis of brain activities


Keywords


EEG Signal Classification; Temporal Feature Extraction; Deep Learning; Electroencephalogram; Parallel Processing

Full Text:

PDF

References


S. Roy, I. Kiral-Kornek, and S. Harrer, “Deep Learning Enabled Automatic Abnormal EEG Identification,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2018-July, pp. 2756–2759, 2018, doi: 10.1109/EMBC.2018.8512756.

T. Wu, X. Kong, Y. Wang, X. Yang, J. Liu, and J. Qi, “Automatic Classification of EEG Signals via Deep Learning,” IEEE Int. Conf. Ind. Informatics, vol. 2021-July, pp. 1–6, 2021, doi: 10.1109/INDIN45523.2021.9557473.

N. B. Krishna, D. Ganesh, M. Sakthivel, K. Nithya Sree, and I. Arshithalakshmigayathri, “Attention-based model for smart EEG Categorization,” Proc. 2nd IEEE Int. Conf. Adv. Comput. Commun. Appl. Informatics, ACCAI 2023, pp. 1–7, 2023, doi: 10.1109/ACCAI58221.2023.10199507.

D. H. Lee, S. J. Kim, and Y. W. Choi, “Classification of Distraction Levels Using Hybrid Deep Neural Networks From EEG Signals,” Int. Winter Conf. Brain-Computer Interface, BCI, vol. 2023-Febru, pp. 1–4, 2023, doi: 10.1109/BCI57258.2023.10078681.

Ö. Yıldırım, U. B. Baloglu, and U. R. Acharya, “A deep convolutional neural network model for automated identification of abnormal EEG signals,” Neural Comput. Appl., vol. 32, no. 20, pp. 15857–15868, 2020, doi: 10.1007/s00521-018-3889-z.

S. Roy, I. Kiral-Kornek, and S. Harrer, “Chrononet: A deep recurrent neural network for abnormal EEG identification,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11526 LNAI, pp. 47–56, 2019, doi: 10.1007/978-3-030-21642-9_8.

M. C. Guerrero, J. S. Parada, and H. E. Espitia, “EEG signal analysis using classification techniques: Logistic regression, artificial neural networks, support vector machines, and convolutional neural networks,” Heliyon, vol. 7, no. 6, p. e07258, 2021, doi: 10.1016/j.heliyon.2021.e07258.

W. Mumtaz, S. Rasheed, and A. Irfan, “Review of challenges associated with the EEG artifact removal methods,” Biomed. Signal Process. Control, vol. 68, no. April, p. 102741, 2021, doi: 10.1016/j.bspc.2021.102741.

K. Chua, Z. Y. Lim, K. S. Sim, and S. C. Tan, “Development of Brain Balancing System for Left and Right Hemispheres.,” Int. J. Robot. Autom. Sci., vol. 3, no. 1, pp. 1–7, 2018, doi: https://doi.org/10.33093/ijoras.2021.3.1.

F. Siddiqui et al., “Deep Neural Network for EEG Signal-Based Subject-Independent Imaginary Mental Task Classification,” Diagnostics, vol. 13, no. 4, pp. 1–16, 2023, doi: 10.3390/diagnostics13040640.

H. Albaqami, G. M. Hassan, A. Subasi, and A. Datta, “Automatic detection of abnormal EEG signals using wavelet feature extraction and gradient boosting decision tree,” Biomed. Signal Process. Control, vol. 70, no. December 2020, p. 102957, 2021, doi: 10.1016/j.bspc.2021.102957.

D. Kerrigan, J. Hullman, and E. Bertini, “A survey of domain knowledge elicitation in applied machine learning,” Multimodal Technol. Interact., vol. 5, no. 12, 2021, doi: 10.3390/mti5120073.

X. Ji, Y. Li, and P. Wen, “Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30, pp. 1464–1472, 2022, doi: 10.1109/TNSRE.2022.3176004.

M. S. Z. . Ahmad, N. A. Ab. Aziz, and A. K. Ghazali, “Development of Automated Attendance System Using Pretrained Deep Learning Models,” Int. J. Robot. Autom. Sci., vol. 6, no. 1, pp. 6–12, 2024, doi: https://doi.org/10.33093/ijoras.2024.6.1.2.

Z. Y. Lim, C. K. Toa, E. Rao, and K. S. Sim, “Development of Augmented Reality Based Applications for Brain Memory Training,” Int. J. Robot. Autom. Sci., vol. 5, no. 1, pp. 13–20, 2024, doi: https://doi.org/10.33093/ijoras.2023.5.1.3.

F. Hadjou, B. Tabbache, E. L. M. Berkouk, S. Naoui, and ..., “Genetic Algorithm-Based Multitier Ensemble Classifier for Diagnosis of Heart Disease,” Int. J. Robot. Autom. Sci., vol. 6, no. 1, pp. 29–35, 2024, doi: https://doi.org/10.33093/ijoras.2024.6.1.5.

M. Too, L. S. Hoe, and T. C. Kim, “Validity and Reliability of a Conceptual Framework on Enhancing Learning for Students via Kinect: A Pilot Test,” Int. J. Robot. Autom. Sci., vol. 6, no. 1, pp. 59–63, 2024, doi: https://doi.org/10.33093/ijoras.2024.6.1.8.

T. J. Jie and M. S. Sayeed, “Review on Detecting Pneumonia in Deep Learning,” Int. J. Robot. Autom. Sci., vol. 6, no. 1, pp. 70–77, 2024, doi: https://doi.org/10.33093/ijoras.2024.6.1.10.

H. Younis, S. Abbas, U. Hayat, M. H. Musaddiq, and A. Hashmi, “A Cutting-Edge Hybrid Approach for Precise COVID-19 Detection using Deep Learning,” Int. J. Robot. Autom. Sci., vol. 6, no. 1, pp. 86–93, 2024, doi: https://doi.org/10.33093/ijoras.2024.6.1.12.

A.-A. Wody, E. Supriyanto, and . M. N Mohd Warid, “Chronic Kidney Disease Risk Estimation Using Artificial Neural Network,” Int. J. Robot. Autom. Sci., vol. 1, pp. 1–10, 2019, doi: https://doi.org/10.33093/ijoras.2019.1.1.

J.-P. Cheng and S.-C. Haw, “Mental Health Problems Prediction Using Machine Learning Techniques,” Int. J. Robot. Autom. Sci., vol. 5, no. 2, pp. 59–72, 2023, doi: 10.33093/ijoras.2023.5.2.7.

W. C. Yuen, G. C. Lee, and H. K. Sim, “Development of AI-Enabled Contactless Visitor Access Monitoring System,” Int. J. Robot. Autom. Sci., vol. 5, no. 2, pp. 1–13, 2023, doi: https://doi.org/10.33093/ijoras.2023.5.2.1.

W. T. Chan, “Review on Present-day Breast Cancer Detection Techniques,” Int. J. Robot. Autom. Sci., vol. 6, no. 1, pp. 94–101, 2024, doi: https://doi.org/10.33093/ijoras.2024.6.1.13.

H. M. Nasir, N. M. A. Brahin, F. E. M. S. Ariffin, M. S. Mispan, and N. H. A. Wahab, “AI Educational Mobile App Using Deep Learning Approach,” Int. J. Informatics Vis., vol. 7, no. 3, pp. 952–958, 2023, doi: 10.30630/joiv.7.3.1247.

S. Nabila et al., “IoT Attack Detection Using Machine Learning and Deep Learning in Smart Home,” vol. 8, no. March, pp. 510–519, 2024, doi: http://dx.doi.org/10.62527/joiv.8.1.2174.

S. H. Apandi, J. Sallim, R. Mohamed, and N. Ahmad, “Automatic Topic-Based Web Page Classification Using Deep Learning,” Int. J. Informatics Vis., vol. 7, no. 3–2, pp. 2108–2114, 2023, doi: 10.30630/joiv.7.3-2.1616.

E. A. W. Hachim, M. T. Gaata, and T. Abbas, “Voice-Authentication Model Based on Deep Learning for Cloud Environment,” Int. J. Informatics Vis., vol. 7, no. 3, pp. 864–870, 2023, doi: 10.30630/joiv.7.3.1303.

R. M. Schmidt, “Recurrent Neural Networks (RNNs): A gentle Introduction and Overview,” no. 1, pp. 1–16, 2019, doi: https://doi.org/10.48550/arXiv.1912.05911.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D convolutional neural networks and applications: A survey,” Mech. Syst. Signal Process., vol. 151, pp. 1–20, 2021, doi: 10.1016/j.ymssp.2020.107398.

J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8, pp. 2011–2023, 2020, doi: 10.1109/TPAMI.2019.2913372.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” pp. 1–9, 2014, doi: https://doi.org/10.48550/arXiv.1412.3555.

J.-B. Cordonnier, A. Loukas, and M. Jaggi, “Multi-Head Attention: Collaborate Instead of Concatenate,” pp. 1–15, 2020, doi: https://doi.org/10.48550/arXiv.2006.16362.

J. Ruiz de Miras, A. J. Ibáñez-Molina, M. F. Soriano, and S. Iglesias-Parro, “Schizophrenia classification using machine learning on resting state EEG signal,” Biomed. Signal Process. Control, vol. 79, no. September 2022, 2023, doi: 10.1016/j.bspc.2022.104233.

T. S. Kumar, K. N. V. P. S. Rajesh, S. Maheswari, V. Kanhangad, and U. R. Acharya, “Automated Schizophrenia detection using local descriptors with EEG signals,” Eng. Appl. Artif. Intell., vol. 117, no. September 2022, p. 105602, 2023, doi: 10.1016/j.engappai.2022.105602.

S. A. Alshebeili et al., “Inspection of EEG signals for efficient seizure prediction,” Appl. Acoust., vol. 166, p. 107327, 2020, doi: 10.1016/j.apacoust.2020.107327.

M. Savadkoohi, T. Oladunni, and L. Thompson, “A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) Signal,” Biocybern. Biomed. Eng., vol. 40, no. 3, pp. 1328–1341, 2020, doi: 10.1016/j.bbe.2020.07.004.

B. Richhariya and M. Tanveer, “EEG signal classification using universum support vector machine,” Expert Syst. Appl., vol. 106, pp. 169–182, 2018, doi: 10.1016/j.eswa.2018.03.053.

I. F. Warsito, A. Hunold, J. Haueisen, and E. Supriyanto, “Performance Evaluation of Capacitive Based Force Sensor for Electroencephalography Head Caps,” Int. J. Robot. Autom. Sci., vol. 2, pp. 1–5, 2024, doi: https://doi.org/10.33093/ijoras.2020.2.1.

A. Gupta, P. Singh, and M. Karlekar, “A novel signal modeling approach for classification of seizure and seizure-free EEG signals,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 5, pp. 925–935, 2018, doi: 10.1109/TNSRE.2018.2818123.

G. Xiao, M. Shi, M. Ye, B. Xu, Z. Chen, and Q. Ren, “4D attention-based neural network for EEG emotion recognition,” Cogn. Neurodyn., vol. 16, no. 4, pp. 805–818, 2022, doi: 10.1007/s11571-021-09751-5.

B. Wang, Z. Xu, T. Luo, and J. Pan, “EEG-Based Closed-Loop Neurofeedback for Attention Monitoring and Training in Young Adults,” J. Healthc. Eng., vol. 2021, p. 5535810, 2021, doi: 10.1155/2021/5535810.

G. C. Jana, R. Sharma, and A. Agrawal, “A 1D-CNN-Spectrogram Based Approach for Seizure Detection from EEG Signal,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 403–412, 2020, doi: 10.1016/j.procs.2020.03.248.

K. L. Lew, K. S. Sim, S. C. Tan, and F. S. Abas, “Biofeedback Upper Limb Assessment Using Electroencephalogram, Electromyographic, and Electrocardiographic with Machine Learning in Signal Classification,” Eng. Lett., vol. 30, no. 3, pp. 935–947, 2022.

S. Fawaz, K. S. Sim, and S. C. Tan, “Encoding Rich Frequencies for Classification of Stroke Patients EEG Signals,” IEEE Access, vol. 8, pp. 135811–135820, 2020, doi: 10.1109/access.2020.3011185.

I. Obeid and J. Picone, “Temple University Hospital EEG Data Corpus,” Front Neurosci. Accessed: Mar. 25, 2024. [Online]. Available: https://isip.piconepress.com/projects/tuh_eeg/index.shtml

A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning library,” Adv. Neural Inf. Process. Syst., vol. 32, no. NeurIPS, 2019, doi: https://doi.org/10.48550/arXiv.1912.01703.

A. Mao, M. Mohri, and Y. Zhong, “Cross-Entropy Loss Functions: Theoretical Analysis and Applications,” 2023, doi: https://doi.org/10.48550/arXiv.2304.07288.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015, pp. 1–15.