Enhancing Land Management through U-Net Deep Learning: A Case Study on Climate-Related Land Degradation in Berembun Forest Reserve in Malaysia
DOI: http://dx.doi.org/10.62527/joiv.8.4.2948
Abstract
Keywords
Full Text:
PDFReferences
T.-J. Goh, L.-Y. Chong, S.-C. Chong, and P.-Y. Goh, “A Campus-based Chatbot System using Natural Language Processing and Neural Network,” J. Informatics Web Eng., vol. 3, no. 1, pp. 96–116, Feb. 2024, doi: 10.33093/jiwe.2024.3.1.7.
C. C. Chai, W. H. Khoh, Y. H. Pang, and H. Y. Yap, “A Lung Cancer Detection with Pre-Trained CNN Models,” J. Informatics Web Eng., vol. 3, no. 1, pp. 41–54, Feb. 2024, doi: 10.33093/jiwe.2024.3.1.3.
J. J. Ng, K. O. M. Goh, and C. Tee, “Traffic Impact Assessment System using Yolov5 and ByteTrack,” J. Informatics Web Eng., vol. 2, no. 2, pp. 168–188, Sep. 2023, doi: 10.33093/jiwe.2023.2.2.13.
J. O. Victor, X. Chew, K. W. Khaw, and M. H. Lee, “A Cost-Based Dual ConvNet-Attention Transfer Learning Model for ECG Heartbeat Classification,” J. Informatics Web Eng., vol. 2, no. 2, pp. 90–110, Sep. 2023, doi: 10.33093/jiwe.2023.2.2.7.
J.-R. Lee, K.-W. Ng, and Y.-J. Yoong, “Face and Facial Expressions Recognition System for Blind People Using ResNet50 Architecture and CNN,” J. Informatics Web Eng., vol. 2, no. 2, pp. 284–298, Sep. 2023, doi: 10.33093/jiwe.2023.2.2.20.
F. S. Tehrani, M. Calvello, Z. Liu, L. Zhang, and S. Lacasse, “Machine learning and landslide studies: recent advances and applications,” Nat. Hazards, vol. 114, no. 2, pp. 1197–1245, Nov. 2022, doi: 10.1007/s11069-022-05423-7.
F. Abid, “A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems,” Fire Technol., vol. 57, no. 2, pp. 559–590, Mar. 2021, doi: 10.1007/s10694-020-01056-z.
N. M. Prakash Andrea; Loew, Simon, “Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models,” MDPI AG, vol. 12, no. 3, pp. 346-NA, 2020, doi: 10.3390/rs12030346.
P. Jain, S. C. P. Coogan, S. G. Subramanian, M. Crowley, S. Taylor, and M. D. Flannigan, “A review of machine learning applications in wildfire science and management,” Environ. Rev., vol. 28, no. 4, pp. 478–505, Dec. 2020, doi: 10.1139/er-2020-0019.
J. L. Hodges and B. Y. Lattimer, “Wildland Fire Spread Modeling Using Convolutional Neural Networks,” Fire Technol., vol. 55, no. 6, pp. 2115–2142, Nov. 2019, doi: 10.1007/s10694-019-00846-4.
A. L. van Natijne Roderik; Bogaard, Thom, “Machine Learning: New Potential for Local and Regional Deep-Seated Landslide Nowcasting.,” Multidiscip. Digit. Publ. Inst., vol. 20, no. 5, pp. 1425-NA, 2020, doi: 10.3390/s20051425.
J. S. Estrada, A. Fuentes, P. Reszka, and F. Auat Cheein, “Machine learning assisted remote forestry health assessment: a comprehensive state of the art review,” Front. Plant Sci., vol. 14, Jun. 2023, doi: 10.3389/fpls.2023.1139232.
Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, Apr. 2016, doi: 10.1016/j.neucom.2015.09.116.
A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez, “A review on deep learning techniques applied to semantic segmentation,” arXiv Prepr. arXiv1704.06857, 2017, doi: 10.48550/arXiv.1704.06857.
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer, 2015, pp. 234–241. doi: 10.1007/978-3-319-24574-4_28
N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-net and its variants for medical image segmentation: A review of theory and applications,” IEEE Access, vol. 9, pp. 82031–82057, 2021, doi: 10.1109/ACCESS.2021.3086020.
Q. Xu, Z. Ma, N. HE, and W. Duan, “DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation,” Comput. Biol. Med., vol. 154, p. 106626, Mar. 2023, doi: 10.1016/j.compbiomed.2023.106626.
H. Zhang et al., “BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation,” Comput. Biol. Med., vol. 159, p. 106960, 2023.
J. Shao, S. Chen, J. Zhou, H. Zhu, Z. Wang, and M. Brown, “Application of U-Net and Optimized Clustering in Medical Image Segmentation: A Review,” Comput. Model. Eng. Sci., vol. 136, no. 3, pp. 2173–2219, 2023, doi: 10.32604/cmes.2023.025499.
A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and T. Weyde, “Singing voice separation with deep u-net convolutional networks,” 2017, [Online]. Available: https://openaccess.city.ac.uk/id/eprint/19289/.
P. Shi, M. Duan, L. Yang, W. Feng, L. Ding, and L. Jiang, “An improved U-net image segmentation method and its application for metallic grain size statistics,” Materials (Basel)., vol. 15, no. 13, p. 4417, Jun. 2022, doi: 10.3390/ma15134417.
Z. Pan, J. Xu, Y. Guo, Y. Hu, and G. Wang, “Deep learning segmentation and classification for urban village using a worldview satellite image based on U-Net,” Remote Sens., vol. 12, no. 10, p. 1574, May 2020, doi: 10.3390/rs12101574.
W. Alsabhan, T. Alotaiby, and B. Dudin, “Detecting Buildings and Nonbuildings from Satellite Images Using U-Net,” Comput. Intell. Neurosci., vol. 2022, pp. 1–13, May 2022, doi: 10.1155/2022/4831223.
N. Chandra, S. Sawant, and H. Vaidya, “An efficient U-Net model for improved landslide detection from satellite images,” PFG – J. Photogramm. Remote Sens. Geoinf. Sci., vol. 91, no. 1, pp. 13–28, Mar. 2023, doi: 10.1007/s41064-023-00232-4.
S. Reder, J.-P. Mund, N. Albert, L. Waßermann, and L. Miranda, “Detection of windthrown tree stems on UAV-Orthomosaics using U-Net convolutional networks,” Remote Sens., vol. 14, no. 1, p. 75, Dec. 2021, doi: 10.3390/rs14010075.
T. L. Giang, K. B. Dang, Q. Toan Le, V. G. Nguyen, S. S. Tong, and V.-M. Pham, “U-Net convolutional networks for mining land cover classification based on high-resolution UAV imagery,” IEEE Access, vol. 8, pp. 186257–186273, 2020, doi: 10.1109/ACCESS.2020.3030112.
K. Zou, X. Chen, F. Zhang, H. Zhou, and C. Zhang, “A field weed density evaluation method based on UAV imaging and modified U-Net,” Remote Sens., vol. 13, no. 2, p. 310, Jan. 2021, doi: 10.3390/rs13020310.
H. Wang et al., “A novel landslide identification method for multi-scale and complex background region based on multi-model fusion: YOLO + U-Net,” Landslides, vol. 21, no. 4, pp. 901–917, Apr. 2024, doi: 10.1007/s10346-023-02184-7.
J. Vega and C. Hidalgo, “Evaluation of U-Net transfer learning model for semantic segmentation of landslides in the Colombian tropical mountain region,” MATEC Web Conf., vol. 396, p. 19002, May 2024, doi: 10.1051/matecconf/202439619002.
P. Liu, Y. Wei, Q. Wang, Y. Chen, and J. Xie, “Research on post-earthquake landslide extraction algorithm based on improved U-Net model,” Remote Sens., vol. 12, no. 5, p. 894, Mar. 2020, doi: 10.3390/rs12050894.
O. Ghorbanzadeh, Y. Xu, P. Ghamisi, M. Kopp, and D. Kreil, “Landslide4sense: Reference benchmark data and deep learning models for landslide detection,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–17, 2022, doi: 10.1109/TGRS.2022.3215209.
D. Pimentel et al., “Environmental and economic costs of soil erosion and conservation benefits,” Science, vol. 267, no. 5201, pp. 1117–1123, 1995, doi: 10.1126/science.267.5201.1117.
T. Glade, “Landslide occurrence as a response to land use change: a review of evidence from New Zealand,” Catena, vol. 51, no. 3–4, pp. 297–314, 2003, doi: 10.1016/S0341-8162(02)00170-4.
Bernama, “N. Sembilan’s driest district, Jelebu, struck by worst-ever floods,” theSun, Jelebu, Dec. 28, 2021. Available: https://thesun.my/local_news/n-sembilan-s-driest-district-jelebu-struck-by-worst-ever-floods-XE8701123
Bernama, “Jelebu hit by flash floods,” New Straits Times, Jelebu, Mar. 06, 2022. Available: https://www.nst.com.my/news/nation/2022/03/777362/jelebu-hit-flash-floods
DJI Enterprise, “DJI Phantom 4 RTK,” 2023. https://enterprise.dji.com/phantom-4-rtk/specs (accessed May 30, 2024).
DJI Enterprise, “Map Pilot,” 2023. https://enterprise.dji.com/ecosystem/map-pilot (accessed May 30, 2024).
M. Tkachenko, M. Malyuk, A. Holmanyuk, and N. Liubimov, “Label Studio: Data labeling software.” 2020, [Online]. Available: https://github.com/heartexlabs/label-studio.
W. Wu, “Patchify,” GitHub Repository, 2021. https://github.com/dovahcrow/patchify.py (accessed May 30, 2024).
P. Iakubovskii, “Segmentation Models,” GitHub Repository, 2019. https://github.com/qubvel/segmentation_models (accessed Jan. 10, 2024).
S. Bhattiprolu, “230_landcover_dataset_segmentation,” 2023. https://github.com/bnsreenu/python_for_microscopists (accessed Jul. 19, 2023).
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.
T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, Springer, 2014, pp. 740–755.
H. Abu Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother, “Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes,” Int. J. Comput. Vis., vol. 126, no. 9, pp. 961–972, Sep. 2018, doi: 10.1007/s11263-018-1070-x.
L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, “Motchallenge 2015: Towards a benchmark for multi-target tracking,” arXiv Prepr. arXiv1504.01942, 2015, doi: 10.48550/arXiv.1504.01942.
M. A. Rahman and Y. Wang, “Optimizing intersection-over-union in deep neural networks for image segmentation,” G. Bebis, R. Boyle, B. Parvin, D. Koracin, F. Porikli, S. Skaff, A. Entezari, J. Min, D. Iwai, A. Sadagic, C. Scheidegger, and T. Isenberg, Eds. Cham: Springer International Publishing, 2016, pp. 234–244. doi: 10.1007/978-3-319-50835-1_22