Development of a Catch-Throwing Skill Analyzer Based on Sensors

Anton Komaini - Universitas Negeri Padang. Indonesia
Yanuar Kiram - Universitas Negeri Padang. Indonesia
Pakhrur Razi - Universitas Negeri Padang. Indonesia
Jaffri Zakaria - Universiti Pendidikan Sultan Idris, Malaysia
Sri Handayani - Universitas Negeri Padang. Indonesia
Heru Andika - Universitas Negeri Padang. Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.8.3-2.2939

Abstract


This research aims to develop a tool for measuring catching-throwing skills using modern, effective, and efficient sensor technology. This tool is designed to increase accuracy in measuring catch-throwing skills. This type of research uses (R&D). This research involved three experts in their field: an electrical expert, an evaluation and measurement expert, and a physicist. A total of 30 participants participated in testing in a small group of 12 people and a large group of 18 people with an age range of 15-20 years. Testing is carried out with questionnaires and direct tests. The statistical analysis used is r-correlation with the help of the SPSS application. The test results show a high alpha coefficient, confirming that this tool is consistent and reliable in collecting data. Three experts carried out practicality testing: Electrical Experts, Evaluation and Measurement Experts, and Physicists. The results show that this tool is efficient, with practicality levels of 98%, 92%, and 89%, respectively. In addition, an excellent level of effectiveness is demonstrated by expert assessment results, which reach 99%, 89%, and 85%. With this tool, researchers and teachers can evaluate object control skills more efficiently and accurately and assist in collecting more comprehensive data. Overall, this tool for measuring throwing and catching skills provides significant innovation and is expected to support research and education in measuring and developing children's motor skills.

Keywords


measuring instruments, throwing and catching, sensors

Full Text:

PDF

References


K. Tuuri and O. Koskela, “Understanding Human–Technology Relations Within Technologization and Appification of Musicality,” Front Psychol, vol. 11, p. 416, Apr. 2020, doi: 10.3389/FPSYG.2020.00416.

D. Kim and Y. J. Ko, “The impact of virtual reality (VR) technology on sport spectators’ flow experience and satisfaction,” Comput Human Behav, vol. 93, pp. 346–356, Apr. 2019, doi: 10.1016/J.CHB.2018.12.040.

M. Szymanski, R. A. Wolfe, W. Danis, F. Lee, and M. A. Uy, “Sport and International Management: Exploring research synergy,” Thunderbird International Business Review, vol. 63, no. 2, pp. 253–266, Mar. 2021, doi: 10.1002/TIE.22139.

V. Ratten, “Sport technology: A commentary,” Journal of High Technology Management Research, vol. 31, no. 1, May 2020, doi: 10.1016/j.hitech.2020.100383.

F. Guppy et al., “Technology Innovation and Guardrails in Elite Sport: The Future is Now,” Dec. 01, 2023, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s40279-023-01913-1.

Y. Qi, S. M. Sajadi, S. Baghaei, R. Rezaei, and W. Li, “Digital technologies in sports: Opportunities, challenges, and strategies for safeguarding athlete wellbeing and competitive integrity in the digital era,” Technol Soc, vol. 77, p. 102496, Jun. 2024, doi: 10.1016/J.TECHSOC.2024.102496.

C. Lawson, E. L. J. Eyre, J. Tallis, and M. J. Duncan, “Fundamental Movement Skill Proficiency Among British Primary School Children: Analysis at a Behavioral Component Level,” Percept Mot Skills, vol. 128, no. 2, pp. 625–648, Apr. 2021, doi: 10.1177/0031512521990330.

K. Wick et al., “Interventions to Promote Fundamental Movement Skills in Childcare and Kindergarten: A Systematic Review and Meta-Analysis,” Sports Medicine, vol. 47, no. 10, pp. 2045–2068, Oct. 2017, doi: 10.1007/S40279-017-0723-1.

B. Smits-Engelsman, D. Jelsma, and D. Coetzee, “Do We Drop the Ball When We Measure Ball Skills Using Standardized Motor Performance Tests?,” Children, vol. 9, no. 3, Mar. 2022, doi: 10.3390/CHILDREN9030367.

M. Mohammadi, F. Elahipanah, and S. Amani-shalamzari, “The role of the cultural environment in the development of physical literacy and physical activity of Iranian children,” BMC Pediatr, vol. 23, no. 1, Dec. 2023, doi: 10.1186/S12887-023-04297-3.

S. Guo, S. Guan, and X. Yan, “Effects of early learning environment on early childhood development in rural areas in China,” Child Youth Serv Rev, vol. 124, May 2021, doi: 10.1016/j.childyouth.2021.105978.

A. Vanhala, A. Widlund, J. Korhonen, E. A. Haapala, A. Sääkslahti, and P. Aunio, “Developmental associations of fundamental motor skills and executive functions in preschoolers — The role of the physical activity and the effects on early numeracy,” Trends Neurosci Educ, vol. 34, p. 100220, Mar. 2024, doi: 10.1016/J.TINE.2024.100220.

Y. Kim, D. A. E. Bolton, M. N. Vakula, and E. Bressel, “Catching and throwing exercises to improve reactive balance: A randomized controlled trial protocol for the comparison of aquatic and dry-land exercise environments,” PLoS One, vol. 17, no. 10, Oct. 2022, doi: 10.1371/JOURNAL.PONE.0275733.

C. C. Lin, S. S. Hsieh, C. J. Huang, S. C. Kao, Y. K. Chang, and T. M. Hung, “The unique contribution of motor ability to visuospatial working memory in school‐age children: Evidence from event‐related potentials,” Psychophysiology, vol. 60, no. 3, Mar. 2023, doi: 10.1111/PSYP.14182.

L. M. Barnett, R. M. Telford, C. Strugnell, J. Rudd, L. S. Olive, and R. D. Telford, “Impact of cultural background on fundamental movement skill and its correlates,” J Sports Sci, vol. 37, no. 5, pp. 492–499, Mar. 2019, doi: 10.1080/02640414.2018.1508399.

B. Hollaus, B. Reiter, and J. C. Volmer, “Catch Recognition in Automated American Football Training Using Machine Learning,” Sensors (Basel), vol. 23, no. 2, Jan. 2023, doi: 10.3390/S23020840.

J. Almulla, A. Takiddin, and M. Househ, “The use of technology in tracking soccer players’ health performance: a scoping review,” BMC Med Inform Decis Mak, vol. 20, no. 1, Aug. 2020, doi: 10.1186/S12911-020-01156-4.

V. Camomilla, E. Bergamini, S. Fantozzi, and G. Vannozzi, “Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review,” Sensors (Basel), vol. 18, no. 3, Mar. 2018, doi: 10.3390/S18030873.

I. Jukic, K. Prnjak, A. Zoellner, J. J. Tufano, D. Sekulic, and S. Salaj, “The Importance of Fundamental Motor Skills in Identifying Differences in Performance Levels of U10 Soccer Players,” Sports, vol. 7, no. 7, Jul. 2019, doi: 10.3390/SPORTS7070178.

A. E. Pienaar, C. Gericke, and W. du Plessis, “Competency in object control skills at an early age benefit future movement application: Longitudinal data from the nw-child study,” Int J Environ Res Public Health, vol. 18, no. 4, pp. 1–14, Feb. 2021, doi: 10.3390/IJERPH18041648.

M. Kasanen, A. Laukkanen, D. Niemistö, J. Kotkajuuri, N. M. Luukkainen, and A. Sääkslahti, “Do Fundamental Movement Skill Domains in Early Childhood Predict Engagement in Physical Activity of Varied Intensities Later at School Age? A 3-Year Longitudinal Study,” J Mot Learn Dev, vol. 11, no. 3, pp. 424–443, Sep. 2023, doi: 10.1123/JMLD.2023-0004.

T. Luque-Vara, M. Linares-Manrique, E. Fernández-Gómez, A. Martín-Salvador, M. A. Sánchez-Ojeda, and C. Enrique-Mirón, “Content validation of an instrument for the assessment of school teachers’ levels of knowledge of diabetes through expert judgment,” Int J Environ Res Public Health, vol. 17, no. 22, pp. 1–13, Nov. 2020, doi: 10.3390/ijerph17228605.

N. G. Chander, “Study validity,” Journal of Indian Prosthodontist Society, vol. 18, no. 1, pp. 1–2, Jan. 2018, doi: 10.4103/JIPS.JIPS_322_17.

E. Fernández-Gómez, A. Martín-Salvador, T. Luque-Vara, M. A. Sánchez-Ojeda, S. Navarro-Prado, and C. Enrique-Mirón, “Content Validation through Expert Judgement of an Instrument on the Nutritional Knowledge, Beliefs, and Habits of Pregnant Women,” Nutrients, vol. 12, no. 4, Apr. 2020, doi: 10.3390/NU12041136.

T. Dirksen, M. H. E. De Lussanet, K. Zentgraf, L. Slupinski, and H. Wagner, “Increased Throwing Accuracy Improves Children’s Catching Performance in a Ball-Catching Task from the Movement Assessment Battery (MABC-2),” Front Psychol, vol. 7, no. JUL, p. 1122, Jul. 2016, doi: 10.3389/FPSYG.2016.01122.

T. KASUYAMA, I. MUTOU, and H. SASAMOTO, “Development of Overarm Throwing Technique Reflects Throwing Ability during Childhood,” Phys Ther Res, vol. 19, no. 1, p. 24, 2016, doi: 10.1298/PTR.E9896.

B. Senthil Kumar, S. Subbaiah, and A. Ramachandran, “Need for including Hand Eye Coordination and Hand Function Training in the Management of Adhesive Capsulitis – A non-randomized control trial,” Pak J Med Sci, vol. 38, no. 3Part-I, p. 692, Mar. 2022, doi: 10.12669/PJMS.38.3.5153.

J. Navarro, E. Hernout, F. Osiurak, and E. Reynaud, “On the nature of eye-hand coordination in natural steering behavior,” PLoS One, vol. 15, no. 11, Nov. 2020, doi: 10.1371/JOURNAL.PONE.0242818.

N. Frevel, D. Beiderbeck, and S. L. Schmidt, “The impact of technology on sports – A prospective study,” Technol Forecast Soc Change, vol. 182, p. 121838, Sep. 2022, doi: 10.1016/J.TECHFORE.2022.121838.

K. L. Alphin, O. M. Sisson, B. L. Hudgins, C. D. Noonan, and J. A. Bunn, “Accuracy Assessment of a GPS Device for Maximum Sprint Speed,” 2020. [Online]. Available: http://www.intjexersci.com

R. T. Li, S. R. Kling, M. J. Salata, S. A. Cupp, J. Sheehan, and J. E. Voos, “Wearable Performance Devices in Sports Medicine,” Sports Health, vol. 8, no. 1, p. 74, Jan. 2016, doi: 10.1177/1941738115616917.

R. Irawan et al., “Design of a sensor technology-based hand-eye coordination measuring tool: Validity and reliability Diseño de una herramienta de medición para la coordinación ojo-mano basada en tecnología de sensores: validez y confiabilidad,” Retos, vol. 56, pp. 966–973, 2024, [Online]. Available: https://recyt.fecyt.es/index.php/retos/index

M. S. Rifki, F. Farma, A. Komaini, E. Sepdanius, Alimuddin, and N. Ayubi, “Development of Sit Up Measuring Tools Based on Arduino and Ultrasonic Sensors With Android Applications,” International Journal of Interactive Mobile Technologies (iJIM), vol. 16, no. 08, pp. 182–189, Apr. 2022, doi: 10.3991/IJIM.V16I08.30673.

A. Komaini et al., “Volleyball Smash Test Instrument Design With Sensor Technology,” J Phys Conf Ser, vol. 2309, no. 1, p. 012011, Jul. 2022, doi: 10.1088/1742-6596/2309/1/012011.

S. Casaccia, R. Naccarelli, S. Moccia, L. Migliorelli, E. Frontoni, and G. M. Revel, “Development of a measurement setup to detect the level of physical activity and social distancing of ageing people in a social garden during COVID-19 pandemic,” Measurement, vol. 184, p. 109946, Nov. 2021, doi: 10.1016/J.MEASUREMENT.2021.109946.

V. Linnamo, “Sensor Technology for Sports Monitoring,” Sensors (Basel), vol. 23, no. 2, p. 572, Jan. 2023, doi: 10.3390/S23020572.

X. Wang, H. Yu, S. Kold, O. Rahbek, and S. Bai, “Wearable sensors for activity monitoring and motion control: A review,” Biomimetic Intelligence and Robotics, vol. 3, no. 1, p. 100089, Mar. 2023, doi: 10.1016/J.BIROB.2023.100089.

S. G. Handayani, D. E. Myori, Yulifri, A. Komaini, and D. T. Mario, “Android-based gymnastics learning media to improve handstand skills in junior high school students,” Journal of Human Sport and Exercise, vol. 18, no. 3, pp. 690–700, Jul. 2023, doi: 10.14198/JHSE.2023.183.15.

A. Alnedral, N. Ihsan, D. Tri Mario, N. Aldani, and D. Purnama Sari, “Digital-Based e-Modules in Tarung Derajat Martial Arts Learning at Basic Level,” International Journal of Human Movement and Sports Sciences, vol. 11, no. 2, pp. 306–315, 2023, doi: 10.13189/saj.2023.110207.

K. Firdaus and D. T. Mario, “Development of service sensor tools on table tennis net,” Journal of Physical Education and Sport, vol. 22, no. 6, pp. 1449–1456, Jun. 2022, doi: 10.7752/jpes.2022.06182.

Z. L. Wang, J. Chen, and L. Lin, “Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors,” Energy Environ Sci, vol. 8, no. 8, pp. 2250–2282, Jul. 2015, doi: 10.1039/C5EE01532D.

J. J. Ferreira, C. Fernandes, V. Ratten, and D. Miragaia, “Sports Innovation: A Bibliometric Study,” Contributions to Management Science, pp. 153–170, 2020, doi: 10.1007/978-3-030-29458-8_10.

A. Komaini, Hermanzoni, S. G. Handayani, M. S. Rifki, Y. Kiram, and N. Ayubi, “Design of Children’s Motor Training Tools Using Sensor-Based Agility Components in Physical Education Learning,” International Journal of Interactive Mobile Technologies (iJIM), vol. 16, no. 05, pp. 207–215, Mar. 2022, doi: 10.3991/IJIM.V16I05.29731.

N. Frøvik, B. A. Malekzai, and K. Øvsthus, “Utilising LiDAR for fall detection,” Healthc Technol Lett, vol. 8, no. 1, p. 11, Feb. 2021, doi: 10.1049/HTL2.12001.

S. R. Tunis, D. B. Stryer, and C. M. Clancy, “Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy,” JAMA, vol. 290, no. 12, pp. 1624–1632, Sep. 2003, doi: 10.1001/JAMA.290.12.1624.

J. M. García-Ceberino, A. Antúnez, S. J. Ibáñez, and S. Feu, “Design and Validation of the Instrument for the Measurement of Learning and Performance in Football,” Int J Environ Res Public Health, vol. 17, no. 13, pp. 1–22, Jul. 2020, doi: 10.3390/IJERPH17134629.

S. M. Phillips et al., “A systematic review of the validity, reliability, and feasibility of measurement tools used to assess the physical activity and sedentary behaviour of pre-school aged children,” Int J Behav Nutr Phys Act, vol. 18, no. 1, Dec. 2021, doi: 10.1186/S12966-021-01132-9.

C. Herrmann, C. Heim, and H. Seelig, “Construct and correlates of basic motor competencies in primary school-aged children,” J Sport Health Sci, vol. 8, no. 1, pp. 63–70, Jan. 2019, doi: 10.1016/J.JSHS.2017.04.002.

D. F. A. A. Derikx and M. M. Schoemaker, “The nature of coordination and control problems in children with developmental coordination disorder during ball catching: A systematic review,” Hum Mov Sci, vol. 74, p. 102688, Dec. 2020, doi: 10.1016/J.HUMOV.2020.102688.