Multilayer Perceptron Model with Feature Extraction for Potassium Deficiency Identification of Cocoa Plants
DOI: http://dx.doi.org/10.62527/joiv.9.1.2829
Abstract
Keywords
Full Text:
PDFReferences
H. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, “Computer vision technology in agricultural automation—A review,” Inf. Process. Agric., vol. 7, no. 1, pp. 1–19, 2020.
Basri, Harli, Indrabayu, I. S. Areni, and R. Tamin, “Image Processing System for Early Detection of Cocoa Fruit Pest Attack,” J. Phys. Conf. Ser., vol. 1244, p. 12003, Jun. 2019, doi: 10.1088/1742-6596/1244/1/012003.
I. M. Fahmid, H. Harun, M. M. Fahmid, and N. Busthanul, “Competitiveness, production, and productivity of cocoa in Indonesia,” in IOP Conference Series: Earth and Environmental Science, 2018, vol. 157, no. 1, p. 12067.
C. M. A. Wattimena, “Identification of Symptoms of Pests and Major Diseases of Cocoa (Theobroma Cacao L) and Control Efforts,” J-DEPACE (Journal Dedication to Papua Community), vol. 2, no. 1, pp. 66–74, 2019.
Y. Defitri, “Intensity of Several Main Diseases of Cocoa (Theobroma cacao, L.) in Betung Village, Kumpeh Ilir District,” J. Media Pertan., vol. 4, no. 2, pp. 81–87, 2019.
J. A. Dogbatse, A. Arthur, G. K. Awudzi, A. K. Quaye, S. Konlan, and A. A. Amaning, “Effects of organic and inorganic fertilizers on growth and nutrient uptake by Young Cacao (Theobroma cacao L.),” Int. J. Agron., vol. 2021, 2021.
B. Amponsah-Doku, A. Daymond, S. Robinson, L. Atuah, and T. Sizmur, “Improving soil health and closing the yield gap of cocoa production in Ghana–a review,” Sci. African, p. e01075, 2021.
A. Hafeez et al., “Implementation of drone technology for farm monitoring & pesticide spraying: A review,” Inf. Process. Agric., 2022.
Basri, R. Tamin, H. A. Karim, Indrabayu, and I. S. Areni, “Mobile image processing application for cacao’s fruits pest and disease attack using deep learning algorithm,” ICIC Express Lett., vol. 14, no. 10, 2020, doi: 10.24507/icicel.14.10.1025.
E. Permata, A. Suherman, and A. Maulana, “Klasifikasi Daun Tanaman Theobroma Cacao Menggunakan Metode Neural Network,” in Seminar. Nasional Teknologi Informasi dan Komunikasi ISSN, 2014, pp. 2089–9813.
K. R. Prilianti et al., “Adaptive Neuro-Fuzzy Inference System for Non-linear Classification Problem of Theobroma cacao Image,” Sci. Technol., vol. 22, no. 3–4, pp. 272–283, 2019.
B. Basri, M. Assidiq, H. A. Karim, and A. Nuraisyah, “Extreme learning machine with feature extraction using GLCM for phosphorus deficiency identification of cocoa plants,” Ilk. J. Ilmiah; Vol 14, No 2 (2022)DO - 10.33096/ilkom.v14i2.1226.112-119 , Aug. 2022, [Online]. Available: https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1226
Basri, Indrabayu, A. Achmad, and I. S. Areni, “Comparison of Image Extraction Model for Cocoa Disease Fruits Attack in Support Vector Machine Classification,” in 2022 International Conference on Electrical and Information Technology (IEIT), 2022, pp. 46–51. doi: 10.1109/IEIT56384.2022.9967910.
S. R. Jino Ramson, K. Lova Raju, S. Vishnu, and T. Anagnostopoulos, “Nature inspired optimization techniques for image processing—A short review,” Nat. Inspired Optim. Tech. Image Process. Appl., pp. 113–145, 2019.
S. Anraeni, E. R. Melani, and H. Herman, “Ripeness Identification of Chayote Fruits Using HSI and LBP Feature Extraction With KNN Classification,” Ilk. J. Ilm., vol. 14, no. 2, pp. 150–159, 2022, doi: 10.33096/ilkom.v14i2.1153.150-159.
S. Jamil et al., “Malicious UAV Detection Using Integrated Audio and Visual Features for Public Safety Applications,” Sensors, vol. 20, no. 14, p. 3923, 2020, doi: 10.3390/s20143923.
K. Kaplan, Y. Kaya, M. Kuncan, and H. M. Ertunç, “Brain Tumor Classification Using Modified Local Binary Patterns (LBP) Feature Extraction Methods,” Med. Hypotheses, vol. 139, p. 109696, 2020, doi: 10.1016/j.mehy.2020.109696.
A. Rachmad, M. Syarief, S. Rifka, F. Sonata, W. Setiawan, and E. M. S. Rochman, “Corn Leaf Disease Classification Using Local Binary Patterns (LBP) Feature Extraction,” J. Phys. Conf. Ser., vol. 2406, no. 1, p. 12020, 2022, doi: 10.1088/1742-6596/2406/1/012020.
F. W. Alsaade, T. H. H. Aldhyani, and M. H. Al-Adhaileh, “Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms,” Comput. Math. Methods Med., vol. 2021, pp. 1–20, 2021, doi: 10.1155/2021/9998379.
M. Yildirim, H. Bingol, E. Cengil, S. Aslan, and M. Baykara, “Automatic Classification of Particles in the Urine Sediment Test With the Developed Artificial Intelligence-Based Hybrid Model,” Diagnostics, vol. 13, no. 7, p. 1299, 2023, doi: 10.3390/diagnostics13071299.
X. Yang, “Application Research on ALBP Image Recognition Algorithm in Visual Aid System for Deaf People,” 2024, doi: 10.1117/12.3017945.
J. Wang and S.-G. Jahng, “Research on Local Feature Intelligent Extraction Algorithm of Blurred Image Under Complex Illumination Conditions,” Ieee Access, vol. 9, pp. 84948–84955, 2021, doi: 10.1109/access.2021.3088336.
T. Zhang, P. Zhang, W. Zhong, Y. Zhang, and F. Yang, “JL-GFDN: A Novel Gabor Filter-Based Deep Network Using Joint Spectral-Spatial Local Binary Pattern for Hyperspectral Image Classification,” Remote Sens., vol. 12, no. 12, p. 2016, 2020, doi: 10.3390/rs12122016.
Z. Zhang, L. P. Zheng, Y. Piao, S. Tao, W. Xu, and T. Gao, “Blind Remote Sensing Image Deblurring Using Local Binary Pattern Prior,” Remote Sens., vol. 14, no. 5, p. 1276, 2022, doi: 10.3390/rs14051276.
B. Li, “Detection of the Storage Time of Light Bruises in Yellow Peaches Based on Spectrum and Texture Features of Hyperspectral Image,” J. Chemom., vol. 37, no. 11, 2023, doi: 10.1002/cem.3516.
H. Liu, J. Ge, S. Yang, L. Zhang, Y. Xue, and J. Lan, “Reflection Coefficient Estimation of Femtosecond Laser Surface Processing Using Support Vector Regression,” IEEE Photonics J., vol. 14, no. 6, pp. 1–9, 2022, doi: 10.1109/jphot.2022.3214238.
E. Elfira, W. Priharti, and D. Rahmawati, “Comparison of GLCM and First Order Feature Extraction Methods for Classification of Mammogram Images,” J. Teknokes, vol. 15, no. 4, 2022, doi: 10.35882/teknokes.v15i4.458.
U. Umar, S. Syarif, I. Nurtanio, and I. Indrabayu, “Application of Artificial Neural Network and Gray Level Co-Occurrence Matrix to Detect Blood Glucose Levels Through the Skin of the Hands.,” J. Teknol. Elekterika, vol. 19, no. 2, p. 78, 2022, doi: 10.31963/elekterika.v6i2.3756.
Z. Zeng, S. Sun, T. Li, J. Yin, Y. Shen, and Q. Huang, “Exploring the Topic Evolution of Dunhuang Murals Through Image Classification,” J. Inf. Sci., vol. 50, no. 1, pp. 35–52, 2022, doi: 10.1177/01655515221074336.
H. Nurrani, A. K. Nugroho, S. Heranurweni, E. Supriyanto, and - Generousdi, “Vegetable Type Classification Using Naive Bayes Algorithm Based on Image Processing,” Jaict, vol. 7, no. 2, p. 102, 2022, doi: 10.32497/jaict.v7i2.3762.
I. Kurniastuti, E. N. I. Yuliati, F. Yudianto, and T. D. Wulan, “Determination of Hue Saturation Value (HSV) Color Feature in Kidney Histology Image,” J. Phys. Conf. Ser., vol. 2157, no. 1, p. 12020, 2022, doi: 10.1088/1742-6596/2157/1/012020.
F. S. Lesiangi, A. Y. Mauko, and B. S. Djahi, “Feature extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) for identification of woven fabric motifs in South Central Timor Regency,” J. Phys. Conf. Ser., vol. 2017, no. 1, p. 12010, 2021, doi: 10.1088/1742-6596/2017/1/012010.
L. Latumakulita et al., “Combination of Feature Extractions for Classification of Coral Reef Fish Types Using Backpropagation Neural Network,” Joiv Int. J. Informatics Vis., vol. 6, no. 3, p. 643, 2022, doi: 10.30630/joiv.6.3.1082.
A. Arnita, F. Marpaung, Z. A. Koemadji, M. Hidayat, A. Widianto, and F. A. Aulia, “Selection of Food Identification System Features Using Convolutional Neural Network (CNN) Method,” Sci. J. Informatics, vol. 10, no. 2, pp. 205–216, 2023, doi: 10.15294/sji.v10i2.44059.
C. Sandoval, E. Pirogova, and M. Lech, “Two-Stage Deep Learning Approach to the Classification of Fine-Art Paintings,” Ieee Access, vol. 7, pp. 41770–41781, 2019, doi: 10.1109/access.2019.2907986.
U. Barman, “Deep Convolutional Neural Network (CNN) in Tea Leaf Chlorophyll Estimation: A New Direction of Modern Tea Farming in Assam, India,” J. Appl. Nat. Sci., vol. 13, no. 3, pp. 1059–1064, 2021, doi: 10.31018/jans.v13i3.2892.
W. Chen, B. Li, and Z. He, “Generative Adversarial Networks Based on MLP,” 2022, doi: 10.1117/12.2644522.
H. Touvron et al., “ResMLP: Feedforward Networks for Image Classification With Data-Efficient Training,” 2021, doi: 10.48550/arxiv.2105.03404.
K. Shankar, Y. Zhang, Y. Liu, L. Wu, and C. Chen, “Hyperparameter Tuning Deep Learning for Diabetic Retinopathy Fundus Image Classification,” Ieee Access, vol. 8, pp. 118164–118173, 2020, doi: 10.1109/access.2020.3005152.
Basri, R. Tamin, Harli, Indrabayu, and I. S. Areni, “Application for Image Processing in a Receiver Operating Character-Based Testing Review,” IOP Conf. Ser. Earth Environ. Sci., vol. 1209, no. 1, p. 12030, 2023, doi: 10.1088/1755-1315/1209/1/012030.
P. K. Sethy, N. K. Barpanda, A. K. Rath, and S. K. Behera, “Deep feature based rice leaf disease identification using support vector machine,” Comput. Electron. Agric., vol. 175, p. 105527, 2020.