Multilayer Perceptron Model with Feature Extraction for Potassium Deficiency Identification of Cocoa Plants

Basri Basri - Universitas Al Asyariah Mandar, Polewali Mandar, Sulawesi Barat, Indonesia
Harli Karim - Universitas Al Asyariah Mandar, Polewali Mandar, Sulawesi Barat, Indonesia
Muhammad Assidiq - Universitas Al Asyariah Mandar, Polewali Mandar, Sulawesi Barat, Indonesia
Muhammad Arafah - Universitas Al Asyariah Mandar, Polewali Mandar, Sulawesi Barat, Indonesia
Fitria Rahmadani - Universitas Al Asyariah Mandar, Polewali Mandar, Sulawesi Barat, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.9.1.2829

Abstract


The development of Multilayer Perceptron (MLP) models for networked learning systems heavily relies on the specific application case study and the accurate parameterization aligned with the chosen computer vision feature extraction models. This study proposes an MLP model for identifying potassium deficiency in cocoa plants. The feature extraction methodology employs object feature extraction that commonly used in computer vision, including Local Binary Pattern (LBP), Gray Level Co-Occurrence Matrix (GLCM), and Hue Saturation Value (HSV) models. These computer vision techniques aid in analyzing leaf characteristics classified into two categories: normal conditions and leaves identified with potassium deficiency. The dataset used in this research comprises two conditions: with a white background and without any specific background. The study evaluates various feature extraction techniques based on MLP parameters, incorporating network learning rates and optimizing solvers. Employing the ROC analysis method throughout the data collection, algorithm development, validation, and analysis phases reveals that the most effective classification performance, reaching up to 93.33% accuracy on the background dataset and 90.00% on the non-background dataset, is achieved using HSV-based color feature extraction with MLP parameters set at an initial learning rate of 10-3 and employing the Adam optimization solver. These outcomes underscore the suitability of HSV color feature extraction for identifying potassium deficiency in cocoa plant leaves. However, optimizing parameters remains crucial to maximize its application in real-time identification systems. Future research should refine these parameters to enhance the model's robustness and efficacy across broader agricultural contexts.

Keywords


MLP; Feature Extraction; Cocoa; Potassium Deficiency; Computer Vision

Full Text:

PDF

References


H. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, “Computer vision technology in agricultural automation—A review,” Inf. Process. Agric., vol. 7, no. 1, pp. 1–19, 2020.

Basri, Harli, Indrabayu, I. S. Areni, and R. Tamin, “Image Processing System for Early Detection of Cocoa Fruit Pest Attack,” J. Phys. Conf. Ser., vol. 1244, p. 12003, Jun. 2019, doi: 10.1088/1742-6596/1244/1/012003.

I. M. Fahmid, H. Harun, M. M. Fahmid, and N. Busthanul, “Competitiveness, production, and productivity of cocoa in Indonesia,” in IOP Conference Series: Earth and Environmental Science, 2018, vol. 157, no. 1, p. 12067.

C. M. A. Wattimena, “Identification of Symptoms of Pests and Major Diseases of Cocoa (Theobroma Cacao L) and Control Efforts,” J-DEPACE (Journal Dedication to Papua Community), vol. 2, no. 1, pp. 66–74, 2019.

Y. Defitri, “Intensity of Several Main Diseases of Cocoa (Theobroma cacao, L.) in Betung Village, Kumpeh Ilir District,” J. Media Pertan., vol. 4, no. 2, pp. 81–87, 2019.

J. A. Dogbatse, A. Arthur, G. K. Awudzi, A. K. Quaye, S. Konlan, and A. A. Amaning, “Effects of organic and inorganic fertilizers on growth and nutrient uptake by Young Cacao (Theobroma cacao L.),” Int. J. Agron., vol. 2021, 2021.

B. Amponsah-Doku, A. Daymond, S. Robinson, L. Atuah, and T. Sizmur, “Improving soil health and closing the yield gap of cocoa production in Ghana–a review,” Sci. African, p. e01075, 2021.

A. Hafeez et al., “Implementation of drone technology for farm monitoring & pesticide spraying: A review,” Inf. Process. Agric., 2022.

Basri, R. Tamin, H. A. Karim, Indrabayu, and I. S. Areni, “Mobile image processing application for cacao’s fruits pest and disease attack using deep learning algorithm,” ICIC Express Lett., vol. 14, no. 10, 2020, doi: 10.24507/icicel.14.10.1025.

E. Permata, A. Suherman, and A. Maulana, “Klasifikasi Daun Tanaman Theobroma Cacao Menggunakan Metode Neural Network,” in Seminar. Nasional Teknologi Informasi dan Komunikasi ISSN, 2014, pp. 2089–9813.

K. R. Prilianti et al., “Adaptive Neuro-Fuzzy Inference System for Non-linear Classification Problem of Theobroma cacao Image,” Sci. Technol., vol. 22, no. 3–4, pp. 272–283, 2019.

B. Basri, M. Assidiq, H. A. Karim, and A. Nuraisyah, “Extreme learning machine with feature extraction using GLCM for phosphorus deficiency identification of cocoa plants,” Ilk. J. Ilmiah; Vol 14, No 2 (2022)DO - 10.33096/ilkom.v14i2.1226.112-119 , Aug. 2022, [Online]. Available: https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1226

Basri, Indrabayu, A. Achmad, and I. S. Areni, “Comparison of Image Extraction Model for Cocoa Disease Fruits Attack in Support Vector Machine Classification,” in 2022 International Conference on Electrical and Information Technology (IEIT), 2022, pp. 46–51. doi: 10.1109/IEIT56384.2022.9967910.

S. R. Jino Ramson, K. Lova Raju, S. Vishnu, and T. Anagnostopoulos, “Nature inspired optimization techniques for image processing—A short review,” Nat. Inspired Optim. Tech. Image Process. Appl., pp. 113–145, 2019.

S. Anraeni, E. R. Melani, and H. Herman, “Ripeness Identification of Chayote Fruits Using HSI and LBP Feature Extraction With KNN Classification,” Ilk. J. Ilm., vol. 14, no. 2, pp. 150–159, 2022, doi: 10.33096/ilkom.v14i2.1153.150-159.

S. Jamil et al., “Malicious UAV Detection Using Integrated Audio and Visual Features for Public Safety Applications,” Sensors, vol. 20, no. 14, p. 3923, 2020, doi: 10.3390/s20143923.

K. Kaplan, Y. Kaya, M. Kuncan, and H. M. Ertunç, “Brain Tumor Classification Using Modified Local Binary Patterns (LBP) Feature Extraction Methods,” Med. Hypotheses, vol. 139, p. 109696, 2020, doi: 10.1016/j.mehy.2020.109696.

A. Rachmad, M. Syarief, S. Rifka, F. Sonata, W. Setiawan, and E. M. S. Rochman, “Corn Leaf Disease Classification Using Local Binary Patterns (LBP) Feature Extraction,” J. Phys. Conf. Ser., vol. 2406, no. 1, p. 12020, 2022, doi: 10.1088/1742-6596/2406/1/012020.

F. W. Alsaade, T. H. H. Aldhyani, and M. H. Al-Adhaileh, “Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms,” Comput. Math. Methods Med., vol. 2021, pp. 1–20, 2021, doi: 10.1155/2021/9998379.

M. Yildirim, H. Bingol, E. Cengil, S. Aslan, and M. Baykara, “Automatic Classification of Particles in the Urine Sediment Test With the Developed Artificial Intelligence-Based Hybrid Model,” Diagnostics, vol. 13, no. 7, p. 1299, 2023, doi: 10.3390/diagnostics13071299.

X. Yang, “Application Research on ALBP Image Recognition Algorithm in Visual Aid System for Deaf People,” 2024, doi: 10.1117/12.3017945.

J. Wang and S.-G. Jahng, “Research on Local Feature Intelligent Extraction Algorithm of Blurred Image Under Complex Illumination Conditions,” Ieee Access, vol. 9, pp. 84948–84955, 2021, doi: 10.1109/access.2021.3088336.

T. Zhang, P. Zhang, W. Zhong, Y. Zhang, and F. Yang, “JL-GFDN: A Novel Gabor Filter-Based Deep Network Using Joint Spectral-Spatial Local Binary Pattern for Hyperspectral Image Classification,” Remote Sens., vol. 12, no. 12, p. 2016, 2020, doi: 10.3390/rs12122016.

Z. Zhang, L. P. Zheng, Y. Piao, S. Tao, W. Xu, and T. Gao, “Blind Remote Sensing Image Deblurring Using Local Binary Pattern Prior,” Remote Sens., vol. 14, no. 5, p. 1276, 2022, doi: 10.3390/rs14051276.

B. Li, “Detection of the Storage Time of Light Bruises in Yellow Peaches Based on Spectrum and Texture Features of Hyperspectral Image,” J. Chemom., vol. 37, no. 11, 2023, doi: 10.1002/cem.3516.

H. Liu, J. Ge, S. Yang, L. Zhang, Y. Xue, and J. Lan, “Reflection Coefficient Estimation of Femtosecond Laser Surface Processing Using Support Vector Regression,” IEEE Photonics J., vol. 14, no. 6, pp. 1–9, 2022, doi: 10.1109/jphot.2022.3214238.

E. Elfira, W. Priharti, and D. Rahmawati, “Comparison of GLCM and First Order Feature Extraction Methods for Classification of Mammogram Images,” J. Teknokes, vol. 15, no. 4, 2022, doi: 10.35882/teknokes.v15i4.458.

U. Umar, S. Syarif, I. Nurtanio, and I. Indrabayu, “Application of Artificial Neural Network and Gray Level Co-Occurrence Matrix to Detect Blood Glucose Levels Through the Skin of the Hands.,” J. Teknol. Elekterika, vol. 19, no. 2, p. 78, 2022, doi: 10.31963/elekterika.v6i2.3756.

Z. Zeng, S. Sun, T. Li, J. Yin, Y. Shen, and Q. Huang, “Exploring the Topic Evolution of Dunhuang Murals Through Image Classification,” J. Inf. Sci., vol. 50, no. 1, pp. 35–52, 2022, doi: 10.1177/01655515221074336.

H. Nurrani, A. K. Nugroho, S. Heranurweni, E. Supriyanto, and - Generousdi, “Vegetable Type Classification Using Naive Bayes Algorithm Based on Image Processing,” Jaict, vol. 7, no. 2, p. 102, 2022, doi: 10.32497/jaict.v7i2.3762.

I. Kurniastuti, E. N. I. Yuliati, F. Yudianto, and T. D. Wulan, “Determination of Hue Saturation Value (HSV) Color Feature in Kidney Histology Image,” J. Phys. Conf. Ser., vol. 2157, no. 1, p. 12020, 2022, doi: 10.1088/1742-6596/2157/1/012020.

F. S. Lesiangi, A. Y. Mauko, and B. S. Djahi, “Feature extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) for identification of woven fabric motifs in South Central Timor Regency,” J. Phys. Conf. Ser., vol. 2017, no. 1, p. 12010, 2021, doi: 10.1088/1742-6596/2017/1/012010.

L. Latumakulita et al., “Combination of Feature Extractions for Classification of Coral Reef Fish Types Using Backpropagation Neural Network,” Joiv Int. J. Informatics Vis., vol. 6, no. 3, p. 643, 2022, doi: 10.30630/joiv.6.3.1082.

A. Arnita, F. Marpaung, Z. A. Koemadji, M. Hidayat, A. Widianto, and F. A. Aulia, “Selection of Food Identification System Features Using Convolutional Neural Network (CNN) Method,” Sci. J. Informatics, vol. 10, no. 2, pp. 205–216, 2023, doi: 10.15294/sji.v10i2.44059.

C. Sandoval, E. Pirogova, and M. Lech, “Two-Stage Deep Learning Approach to the Classification of Fine-Art Paintings,” Ieee Access, vol. 7, pp. 41770–41781, 2019, doi: 10.1109/access.2019.2907986.

U. Barman, “Deep Convolutional Neural Network (CNN) in Tea Leaf Chlorophyll Estimation: A New Direction of Modern Tea Farming in Assam, India,” J. Appl. Nat. Sci., vol. 13, no. 3, pp. 1059–1064, 2021, doi: 10.31018/jans.v13i3.2892.

W. Chen, B. Li, and Z. He, “Generative Adversarial Networks Based on MLP,” 2022, doi: 10.1117/12.2644522.

H. Touvron et al., “ResMLP: Feedforward Networks for Image Classification With Data-Efficient Training,” 2021, doi: 10.48550/arxiv.2105.03404.

K. Shankar, Y. Zhang, Y. Liu, L. Wu, and C. Chen, “Hyperparameter Tuning Deep Learning for Diabetic Retinopathy Fundus Image Classification,” Ieee Access, vol. 8, pp. 118164–118173, 2020, doi: 10.1109/access.2020.3005152.

Basri, R. Tamin, Harli, Indrabayu, and I. S. Areni, “Application for Image Processing in a Receiver Operating Character-Based Testing Review,” IOP Conf. Ser. Earth Environ. Sci., vol. 1209, no. 1, p. 12030, 2023, doi: 10.1088/1755-1315/1209/1/012030.

P. K. Sethy, N. K. Barpanda, A. K. Rath, and S. K. Behera, “Deep feature based rice leaf disease identification using support vector machine,” Comput. Electron. Agric., vol. 175, p. 105527, 2020.