Two-Way Thesis Supervisor Recommendation System Using MapReduce K-Skyband View Queries
DOI: http://dx.doi.org/10.62527/joiv.9.1.2800
Abstract
Timely graduation is an important indicator of the quality of higher education. Yet, many students struggle to complete their studies on time due to challenges in finding relevant research topics and suitable supervisors. This study developed a two-way supervisor recommendation system that considers the preferences and expertise of both students and supervisors. The main contribution of this research is the comparison of Block Nested Loop (BNL) k-skyband and MapReduce k-skyband algorithms. The recommendation model developed in this study uses course syllabi to obtain research topics and academic grades to determine students' interests in research topics. A total of 239 research topics were obtained from 37 courses. Optimal recommendations were achieved with a k value of 16. Implementing the MapReduce algorithm in this recommendation model demonstrated a computation speed 8 times faster than the BNL k-skyband approach, making it effective in handling large datasets. The proposed recommendation system received positive feedback from students, with scores of 3.5 for relevance, 3.7 for topic diversity, 3.4 for serendipity, and 3.5 for novelty. These findings suggest that the proposed recommendation system can support students in their research endeavors and improve the overall supervision process in academic settings, with potential for widespread implementation across various study programs. Thus, contributing to the overall improvement of higher education quality.
Keywords
Full Text:
PDFReferences
E. Van Rooij, M. Fokkens-Bruinsma, and E. Jansen, “Factors that influence PhD candidates’ success: the importance of PhD project characteristics,” Studies in Continuing Education, vol. 43, no. 1, pp. 48–67, Jan. 2021, doi: 10.1080/0158037X.2019.1652158.
D. Witteveen and P. Attewell, “Delayed Time-to-Degree and Post-college Earnings,” Research in Higher Education, vol. 62, no. 2, pp. 230–257, Mar. 2021, doi: 10.1007/s11162-019-09582-8.
M. J. Sá, A. I. Santos, and S. Serpa, “The Academic Supervisor of Higher Education Students’ Final Projects: A Gatekeeper of Quality?,” AJIS, vol. 10, no. 1, p. 152, Jan. 2021, doi: 10.36941/ajis-2021-0013.
A. Selemani, W. D. Chawinga, and G. Dube, “Why do postgraduate students commit plagiarism? An empirical study,” Int J Educ Integr, vol. 14, no. 1, p. 7, Dec. 2018, doi: 10.1007/s40979-018-0029-6.
H. A. Elshafei and T. M. Jahangir, “Factors affecting plagiarism among students at Jazan University,” Bull Natl Res Cent, vol. 44, no. 1, p. 71, Dec. 2020, doi: 10.1186/s42269-020-00313-z.
E. R. Arumi, A. Setiawan, and A. Primadewi, “Decision support system for determining thesis supervisor using analytical hierarchy process (AHP) method,” J. Phys.: Conf. Ser., vol. 1517, no. 1, p. 012107, Apr. 2020, doi: 10.1088/1742-6596/1517/1/012107.
R. Rismanto, A. R. Syulistyo, and B. P. C. Agusta, “Research Supervisor Recommendation System Based on Topic Conformity.,” International Journal of Modern Education & Computer Science, vol. 12, no. 1, 2020.
M. C. Wijanto, R. Rachmadiany, and O. Karnalim, “Thesis Supervisor Recommendation with Representative Content and Information Retrieval,” JISEBI, vol. 6, no. 2, p. 143, Oct. 2020, doi:10.20473/jisebi.6.2.143-150.
J. Chen, J. Huang, B. Jiang, J. Pei, and J. Yin, “Recommendations for two-way selections using skyline view queries,” Knowledge and Information Systems, vol. 34, no. 2, pp. 397–424, Feb. 2013, doi:10.1007/s10115-012-0489-6.
C. Yang, Y. Hou, Y. Song, T. Zhang, J.-R. Wen, and W. X. Zhao, “Modeling Two-Way Selection Preference for Person-Job Fit,” in Proceedings of the 16th ACM Conference on Recommender Systems, Seattle WA USA: ACM, Sep. 2022, pp. 102–112. doi:10.1145/3523227.3546752.
G. I. Sampurno, A. Annisa, and S. H. Wijaya, “Sistem Rekomendasi Dua Arah untuk Pemilihan Dosen Pembimbing Menggunakan Data Histori dan Skyline View Queries,” JTIIK, vol. 9, no. 5, p. 1055, Oct. 2022, doi: 10.25126/jtiik.2022955458.
Annisa Annisa, Muhammad Rayhan Adyatma, Global Ilham Sampurno, and Chen Li, “Two-way Recommendation System for Supervisor Selection using Historical Data and Skyband-view Queries,” ARASET, vol. 34, no. 2, pp. 305–314, Dec. 2023, doi:10.37934/araset.34.2.305314.
L. Abualigah and B. A. Masri, “Advances in MapReduce Big Data Processing: Platform, Tools, and Algorithms,” in Artificial Intelligence and IoT, vol. 85, K. G. Manoharan, J. A. Nehru, and S. Balasubramanian, Eds., in Studies in Big Data, vol. 85. , Singapore: Springer Singapore, 2021, pp. 105–128. doi: 10.1007/978-981-33-6400-4_6.
W. Lin, S. A. Alvarez, and C. Ruiz, “Collaborative recommendation via adaptive association rule mining,” Data Mining and Knowledge Discovery, vol. 6, no. 1, pp. 83–105, 2000.
M. A. Siddique, H. Tian, M. Qaosar, and Y. Morimoto, “MapReduce algorithm for variants of skyline queries: skyband and dominating queries,” Algorithms, vol. 12, no. 8, p. 166, 2019.
M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing For Student Complaint Document Classification Using Sastrawi,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 874, no. 1, p. 012017, Jun. 2020, doi: 10.1088/1757-899X/874/1/012017.
I. M. Krisna Dwitama, M. S. Al Farisi, I. Alfina, and A. Dinakaramani, “Building Morphological Analyzer for Informal Text in Indonesian,” in 2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Depok, Indonesia: IEEE, Oct. 2022, pp. 199–204. doi: 10.1109/ICACSIS56558.2022.9923494.
N. Firoozeh, A. Nazarenko, F. Alizon, and B. Daille, “Keyword extraction: Issues and methods,” Natural Language Engineering, vol. 26, no. 3, pp. 259–291, 2020.
W. Zhuohao, W. Dong, and L. Qing, “Keyword Extraction from Scientific Research Projects Based on SRP‐TF‐IDF,” Chinese J of Electronics, vol. 30, no. 4, pp. 652–657, Jul. 2021, doi:10.1049/cje.2021.05.007.
M. D. Ali Awan, S. Ali, A. Samad, N. Iqbal, M. M. Saad Missen, and N. Ullah, “Sentence Classification Using N-Grams in Urdu Language Text,” Scientific Programming, vol. 2021, pp. 1–11, Nov. 2021, doi:10.1155/2021/1296076.
A. Onan, “Sentiment analysis on massive open online course evaluations: A text mining and deep learning approach,” Comp Applic In Engineering, vol. 29, no. 3, pp. 572–589, May 2021, doi:10.1002/cae.22253.
S. Bag, S. K. Kumar, and M. K. Tiwari, “An efficient recommendation generation using relevant Jaccard similarity,” Information Sciences, vol. 483, pp. 53–64, May 2019, doi: 10.1016/j.ins.2019.01.023.
N. C. Chung, B. Miasojedow, M. Startek, and A. Gambin, “Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data,” BMC Bioinformatics, vol. 20, no. S15, p. 644, Dec. 2019, doi: 10.1186/s12859-019-3118-5.
S. Borzsony, D. Kossmann, and K. Stocker, “The Skyline operator,” in Proceedings 17th International Conference on Data Engineering, IEEE Comput. Soc, 2001, pp. 421–430. doi:10.1109/ICDE.2001.914855.
R. Amin, T. Djatna, Annisa, and I. S. Sitanggang, “Recommendation System based on Skyline Query: Current and Future Research,” in 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA), Bogor, Indonesia: IEEE, Sep. 2020, pp. 1–7. doi: 10.1109/ICOSICA49951.2020.9243225.
Md. A. Siddique, A. Zaman, and Y. Morimoto, “Selection of Important Sets by using K-Skyband Query for Sets,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 4, pp. 304–313, 2018, doi: 10.14569/ijacsa.2018.090444.
M. Bedo, P. Ciaccia, D. Martinenghi, and D. De Oliveira, “A k–Skyband Approach for Feature Selection,” in Similarity Search and Applications, vol. 11807, G. Amato, C. Gennaro, V. Oria, and M. Radovanović, Eds., in Lecture Notes in Computer Science, vol. 11807. , Cham: Springer International Publishing, 2019, pp. 160–168. doi: 10.1007/978-3-030-32047-8_15.
M. Qaosar, A. Zaman, Md. A. Siddique, C. Li, and Y. Morimoto, “Secure k-skyband computation framework in distributed multi-party databases,” Information Sciences, vol. 515, pp. 388–403, Apr. 2020, doi: 10.1016/j.ins.2019.12.027.
A. K. Nalendra, “Rapid Application Development (RAD) model method for creating an agricultural irrigation system based on internet of things,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 1098, no. 2, p. 022103, Mar. 2021, doi: 10.1088/1757-899X/1098/2/022103.
D. Agustin, A. Permana, M. T. Anwar, and L. Ambarwati, “Design Smarthome Application with Rapid Application Development (RAD) Method Based on Hybrid Mobile,” Jurnal Teknologi Informasi dan Pendidikan, vol. 16, no. 1, pp. 86–96, 2023.
M. Kaminskas and D. Bridge, “Diversity, serendipity, novelty, and coverage: a survey and empirical analysis of beyond-accuracy objectives in recommender systems,” ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 7, no. 1, pp. 1–42, 2016.
M. Mansoury, H. Abdollahpouri, M. Pechenizkiy, B. Mobasher, and R. Burke, “FairMatch: A Graph-based Approach for Improving Aggregate Diversity in Recommender Systems,” in Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, Genoa Italy: ACM, Jul. 2020, pp. 154–162. doi:10.1145/3340631.3394860.
Salsabila Martono, Dana Sulistyo Kusumo, Arfive Ghandi, Su-Cheng Haw, and Kok-Why Ng, “User Evaluation of Diversity and Novelty in the Redesigned Recommender List for an Indonesian E-Commerce Platform,” JSMS, vol. 14, no. 4, Aug. 2023, doi:10.33168/JSMS.2023.0437.
O. Stitini, I. García-Magariño, S. Kaloun, and O. Bencharef, “Towards Ideal and Efficient Recommendation Systems Based on the Five Evaluation Concepts Promoting Serendipity,” JAIT, vol. 14, no. 4, pp. 701–717, 2023, doi: 10.12720/jait.14.4.701-717.
G. Manzo, Y. Pannatier, G. Autès, M. De Lucia, J.-G. Piguet, and J.-P. Calbimonte, “Serendipity and diversity boosting for personalized streaming media recommendation,” presented at the Proceedings of the 13th Italian Information Retrieval Workshop (IIR 2023), 2023, pp. 30–40.
C. Kalyvas and M. Maragoudakis, “A Skyline-Based Decision Boundary Estimation Method for Binominal Classification in Big Data,” Computation, vol. 8, no. 3, p. 80, Sep. 2020, doi:10.3390/computation8030080.
W. Wang, J. Zhang, M. Sun, and W.-S. Ku, “Efficient Parallel Spatial Skyline Evaluation Using MapReduce.” OpenProceedings.org, 2017. doi: 10.5441/002/EDBT.2017.38.
F. J. Gravetter, L. B. Wallnau, L.-A. B. Forzano, and J. E. Witnauer, Essentials of statistics for the behavioral sciences. Cengage Learning, 2021.