Toponym Extraction and Disambiguation from Text: A Survey
DOI: http://dx.doi.org/10.62527/joiv.9.1.2763
Abstract
Keywords
Full Text:
PDFReferences
D. Buscaldi, “Approaches to Disambiguating Toponyms,” SIGSPATIAL Spec., no. July 2011, 2011, doi: 10.1145/2047296.2047300.
O. Ozdikis, H. Oğuztüzün, and P. Karagoz, “A survey on location estimation techniques for events detected in Twitter,” Knowl. Inf. Syst., vol. 52, no. 2, pp. 291–339, 2017, doi: 10.1007/s10115-016-1007-z.
K. Stock, “Mining location from social media: A systematic review,” Comput. Environ. Urban Syst., vol. 71, no. March, pp. 209–240, 2018, doi: 10.1016/j.compenvurbsys.2018.05.007.
X. Hu et al., “Location reference recognition from texts: A survey and comparison,” 2022, [Online]. Available: http://arxiv.org/abs/2207.01683
X. Hu et al., “Location reference recognition from texts: A survey and comparison.” 2022.
B. Kitchenham, “Procedures for Performing Systematic Reviews,” Keele University, Keele, Staffs, UK, Jul. 2004.
X. Hu et al., “GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules,” Int. J. Geogr. Inf. Sci., vol. 36, no. 2, pp. 310–337, 2022, doi: 10.1080/13658816.2021.1947507.
D. Inkpen, J. Liu, A. Farzindar, F. Kazemi, and D. Ghazi, “Location Detection and Disambiguation from Twitter Messages,” J. Intell. Inf. Syst., vol. 49, no. 2, pp. 237–253, Oct. 2017, doi: 10.1007/s10844-017-0458-3.
A. F. Lauder and M. R. M. T. Lauder, “Ubiquitous place names: Standardization and study in Indonesia,” Wacana, vol. 16, no. 2, pp. 383–410, 2015, doi: 10.17510/wjhi.v16i2.383.
S. E. Middleton, G. Kordopatis-Zilos, S. Papadopoulos, and Y. Kompatsiaris, “Location Extraction from Social Media: Geoparsing, Location Disambiguation, and Geotagging,” ACM Trans. Inf. Syst., vol. 36, no. 4, Jun. 2018, doi: 10.1145/3202662.
P. Sharma, A. Samal, L.-K. Soh, and D. Joshi, “A spatially-aware algorithm for location extraction from structured documents,” Geoinformatica, 2022, doi: 10.1007/s10707-022-00482-1.
A. Molina-Villegas, V. Muñiz-Sanchez, J. Arreola-Trapala, and F. Alcántara, “Geographic Named Entity Recognition and Disambiguation in Mexican News Using Word Embeddings,” Expert Syst. Appl., vol. 176, p. 114855, Aug. 2021, doi: 10.1016/j.eswa.2021.114855.
J. Fize, M. Roche, and M. Teisseire, “Could Spatial Features Help the Matching of Textual Data?,” Intell. Data Anal., vol. 24, no. 5, pp. 1043–1064, Jan. 2020, doi: 10.3233/IDA-194749.
H. Chen, M. Vasardani, and S. Winter, “Georeferencing places from collective human descriptions using place graphs,” J. Spat. Inf. Sci., vol. 17, pp. 31–62, 2018, doi: 10.5311/JOSIS.2018.17.417.
L. Cadorel, A. Blanchi, and A. G. B. Tettamanzi, “Geospatial Knowledge in Housing Advertisements: Capturing and Extracting Spatial Information from Text,” in Proceedings of the 11th on Knowledge Capture Conference, 2021, pp. 41–48. doi: 10.1145/3460210.3493547.
E. Kamalloo and D. Rafiei, “A Coherent Unsupervised Model for Toponym Resolution,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1287–1296. doi: 10.1145/3178876.3186027.
M. B. Imani, S. Chandra, S. Ma, L. Khan, and B. Thuraisingham, “Focus location extraction from political news reports with bias correction,” in Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017, 2017, vol. 2018-Janua, pp. 1956–1964. doi: 10.1109/BigData.2017.8258141.
A. K. Gunasekaran, M. B. Imani, L. Khan, C. Grant, P. T. Brandt, and J. S. Holmes, “SPERG: Scalable Political Event Report Geoparsing in Big Data,” in 2018 IEEE International Conference on Intelligence and Security Informatics (ISI), 2018, pp. 187–192. doi: 10.1109/ISI.2018.8587373.
Z. Ji, A. Sun, G. Cong, and J. Han, “Joint Recognition and Linking of Fine-Grained Locations from Tweets,” in Proceedings of the 25th International Conference on World Wide Web, 2016, pp. 1271–1281. doi: 10.1145/2872427.2883067.
J. Y. Rafiei and D. Rafiei, “Geotagging Named Entities in News and Online Documents,” in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 2016, pp. 1321–1330. doi: 10.1145/2983323.2983795.
Y. Zhang, C. Szabo, and Q. Z. Sheng, “Sense and Focus: Towards Effective Location Inference and Event Detection on Twitter,” in Proceedings, Part I, of the 16th International Conference on Web Information Systems Engineering --- WISE 2015 - Volume 9418, 2015, pp. 463–477. doi: 10.1007/978-3-319-26190-4_31.
Y. Zhang, C. Szabo, Q. Z. Sheng, and X. S. Fang, “SNAF: Observation Filtering and Location Inference for Event Monitoring on Twitter,” World Wide Web, vol. 21, no. 2, pp. 311–343, Mar. 2018, doi: 10.1007/s11280-017-0453-1.
Z. Zhu, L. Shou, and K. Chen, “Get into the Spirit of a Location by Mining User-Generated Travelogues,” Neurocomputing, vol. 204, no. C, pp. 61–69, Sep. 2016, doi: 10.1016/j.neucom.2015.04.129.
N. J. F. Martínez and C. P. Pascual, “Knowledge-based rules for the extraction of complex, fine-grained locative references from tweets [Reglas basadas en conocimiento para la extracción de referencias locativas complejas en tweets],” Rev. Electron. Linguist. Apl., vol. 19, no. 1, pp. 136–163, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096168423&partnerID=40&md5=eb493c455a2a32cbb56a77b435aefd0f
C. L. M. Jerônimo, C. E. C. Campelo, and C. De Souza Baptista, “Mining influential terms for toponym recognition and resolution,” in Proceedings of the Brazilian Symposium on GeoInformatics, 2015, vol. 2015-Novem, pp. 143–154. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054864410&partnerID=40&md5=151c7455b7df7ce8bf241ca17958cc0f
P. Liu et al., “Extracting locations from sport and exercise-related social media messages using a neural network-based bilingual toponym recognition model,” J. Spat. Inf. Sci., no. 24, pp. 31–61, 2022, doi: 10.5311/JOSIS.2022.24.167.
G. Skoumas, D. Pfoser, A. Kyrillidis, and T. Sellis, “Location Estimation Using Crowdsourced Spatial Relations,” ACM Trans. Spat. Algorithms Syst., vol. 2, no. 2, Jun. 2016, doi: 10.1145/2894745.
M. Alsaqer, S. Alelyani, M. Mohana, K. Alreemy, and A. Alqahtani, “Predicting Location of Tweets Using Machine Learning Approaches,” Appl. Sci., vol. 13, no. 5, 2023, doi: 10.3390/app13053025.
Z. Chen, B. Pokharel, B. Li, and S. Lim, “Location Extraction from Twitter Messages Using a Bidirectional Long Short-Term Memory Neural Network with Conditional Random Field Model,” Commun. Comput. Inf. Sci., vol. 1411 CCIS, pp. 18–30, 2021, doi: 10.1007/978-3-030-76374-9_2.
J.-W. Chung, W. Yang, J. You, and J. C. Park, “Inferring Implicit Event Locations from Context with Distributional Similarities,” in Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, pp. 979–985.
X. Hu et al., “GazPNE2: A General Place Name Extractor for Microblogs Fusing Gazetteers and Pretrained Transformer Models,” IEEE Internet Things J., vol. 9, no. 17, pp. 16259–16271, 2022, doi: 10.1109/JIOT.2022.3150967.
N. J. Fernández-Martínez and C. Periñán-Pascual, “LORE: A model for the detection of fine-grained locative references in tweets,” Onomazein, no. 52, pp. 195–225, 2021, doi: 10.7764/onomazein.52.11.
Z. Khodabandeh Shahraki, A. Fatemi, and H. Tabatabaee Malazi, “Evidential Fine-Grained Event Localization Using Twitter,” Inf. Process. Manag., vol. 56, no. 6, Nov. 2019, doi: 10.1016/j.ipm.2019.05.006.
R. Lamsal, A. Harwood, and M. R. Read, “Addressing the Location A/B Problem on Twitter: The next Generation Location Inference Research,” in Proceedings of the 6th ACM SIGSPATIAL International Workshop on Location-Based Recommendations, Geosocial Networks and Geoadvertising, 2022. doi: 10.1145/3557992.3565989.
S. Pezanowski, A. M. MacEachren, A. Savelyev, and A. C. Robinson, “SensePlace3: a geovisual framework to analyze place–time–attribute information in social media,” Cartogr. Geogr. Inf. Sci., vol. 45, no. 5, pp. 420–437, 2018, doi: 10.1080/15230406.2017.1370391.
K. Lai, J. R. Porter, M. Amodeo, D. Miller, M. Marston, and S. Armal, “A Natural Language Processing Approach to Understanding Context in the Extraction and GeoCoding of Historical Floods, Storms, and Adaptation Measures,” Inf. Process. Manag., vol. 59, no. 1, Jan. 2022, doi: 10.1016/j.ipm.2021.102735.
A. Spitz, J. Geiss, and M. Gertz, “So Far Away and yet so Close: Augmenting Toponym Disambiguation and Similarity with Text-Based Networks,” in Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data, 2016. doi: 10.1145/2948649.2948651.
Y. Hu, X. Ye, and S.-L. Shaw, “Extracting and analyzing semantic relatedness between cities using news articles,” Int. J. Geogr. Inf. Sci., vol. 31, no. 12, pp. 2427–2451, 2017, doi: 10.1080/13658816.2017.1367797.
J. Sergeeva, A. Filatova, M. Kovalchuk, and S. Teryoshkin, “SemAGR: semantic method for accurate geolocations reconstruction within extensive urban sites,” Procedia Comput. Sci., vol. 212, pp. 409–417, 2022, doi: https://doi.org/10.1016/j.procs.2022.11.025.
J. Kim, M. Vasardani, and S. Winter, “Similarity matching for integrating spatial information extracted from place descriptions,” Int. J. Geogr. Inf. Sci., vol. 31, no. 1, pp. 56–80, 2017, doi: 10.1080/13658816.2016.1188930.
R. Liao, P. P. Das, C. B. Jones, N. Aflaki, and K. Stock, “Predicting Distance and Direction from Text Locality Descriptions for Biological Specimen Collections,” in Leibniz International Proceedings in Informatics, LIPIcs, 2022, vol. 240. doi: 10.4230/LIPIcs.COSIT.2022.4.
P. Rayson, A. Reinhold, J. Butler, C. Donaldson, I. Gregory, and J. Taylor, “A Deeply Annotated Testbed for Geographical Text Analysis: The Corpus of Lake District Writing,” in Proceedings of the 1st ACM SIGSPATIAL Workshop on Geospatial Humanities, 2017, pp. 9–15. doi: 10.1145/3149858.3149865.
R. Smail, I. N. Gregory, and J. E. Taylor, “Qualitative geographies in digital texts: Representing historical spatial identities in the lake district,” Int. J. Humanit. Arts Comput., vol. 13, no. 1–2, pp. 28–38, 2019, doi: 10.3366/ijhac.2019.0229.
S. Rusinek and N. Gado, “Feeding a Gazetteer: Leveraging Word Embeddings for Toponym Mining,” in Proceedings of the 5th ACM SIGSPATIAL International Workshop on Geospatial Humanities, 2021, pp. 28–35. doi: 10.1145/3486187.3490202.
L. Moncla, M. Gaio, T. Joliveau, and Y.-F. Le Lay, “Automated Geoparsing of Paris Street Names in 19th Century Novels,” in Proceedings of the 1st ACM SIGSPATIAL Workshop on Geospatial Humanities, 2017, pp. 1–8. doi: 10.1145/3149858.3149859.
L. Moncla, M. Gaio, T. Joliveau, Y.-F. Le Lay, N. Boeglin, and P.-O. Mazagol, “Mapping urban fingerprints of odonyms automatically extracted from French novels,” Int. J. Geogr. Inf. Sci., vol. 33, no. 12, pp. 2477–2497, 2019, doi: 10.1080/13658816.2019.1584804.
M. C. Ardanuy and C. Sporleder, “Toponym Disambiguation in Historical Documents Using Semantic and Geographic Features,” in Proceedings of the 2nd International Conference on Digital Access to Textual Cultural Heritage, 2017, pp. 175–180. doi: 10.1145/3078081.3078099.
L. Moncla, K. McDonough, D. Vigier, T. Joliveau, and A. Brenon, “Toponym Disambiguation in Historical Documents Using Network Analysis of Qualitative Relationships,” in Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Geospatial Humanities, 2019. doi: 10.1145/3356991.3365471.
M. C. Ardanuy, K. McDonough, A. Krause, D. C. S. Wilson, K. Hosseini, and D. van Strien, “Resolving Places, Past and Present: Toponym Resolution in Historical British Newspapers Using Multiple Resources,” in Proceedings of the 13th Workshop on Geographic Information Retrieval, 2019. doi: 10.1145/3371140.3371143.
M. Boonnavasin and P. Rattanatamrong, “Toponym Extraction in Thai Tweets Using a Hybrid Approach,” in Proceedings of the 2020 5th International Conference on Intelligent Information Technology, 2020, pp. 71–76. doi: 10.1145/3385209.3385225.
F. Krauer and B. V Schmid, “Mapping the plague through natural language processing,” Epidemics, vol. 41, p. 100656, 2022, doi: https://doi.org/10.1016/j.epidem.2022.100656.
Y. Zhang et al., “Extracting Geographic Features from the Internet: A Geographic Information Mining Framework,” Knowledge-Based Syst., vol. 174, no. C, pp. 57–72, Jun. 2019, doi: 10.1016/j.knosys.2019.02.031.
M. Karimzadeh and A. M. MacEachren, “Geoannotator: A collaborative semi-automatic platform for constructing geo-annotated text corpora,” ISPRS Int. J. Geo-Information, vol. 8, no. 4, 2019, doi: 10.3390/ijgi8040161.
I. Milanova, J. Silc, M. Serucnik, T. Eftimov, and H. Gjoreski, “LOCALE: A rule-based location named-entity recognition method for Latin text,” in CEUR Workshop Proceedings, 2019, vol. 2461, pp. 13–20. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073809590&partnerID=40&md5=9d523dde57f83e1e68dd31f30ba288a0
G. Cai and Y. Tian, “Towards Geo-Referencing Infrastructure for Local News,” in Proceedings of the 10th Workshop on Geographic Information Retrieval, 2016. doi: 10.1145/3003464.3003473.
M. G. de Oliveira et al., “Gazetteer enrichment for addressing urban areas: a case study,” J. Locat. Based Serv., vol. 10, no. 2, pp. 142–159, Apr. 2016, doi: 10.1080/17489725.2016.1196755.
C. Zhang, B. He, R. Guo, and D. Ma, “A graph-based approach for representing addresses in geocoding,” Comput. Environ. Urban Syst., vol. 100, p. 101937, 2023, doi: https://doi.org/10.1016/j.compenvurbsys.2022.101937.
M. García Lozano, J. Schreiber, and J. Brynielsson, “Tracking geographical locations using a geo-aware topic model for analyzing social media data,” Decis. Support Syst., vol. 99, pp. 18–29, 2017, doi: https://doi.org/10.1016/j.dss.2017.05.006.
O. Kabbani, W. Klumpenhouwer, T. El-Diraby, and A. Shalaby, “What do riders say and where? The detection and analysis of eyewitness transit tweets,” J. Intell. Transp. Syst., vol. 27, no. 3, pp. 347–363, 2023, doi: 10.1080/15472450.2022.2026773.
B. Sibolla, L. Lourens, R. Lubbe, and M. Magome, “An automated approach to mining and visual analytics of spatiotemporal context from online media articles,” in GISTAM 2018 - Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management, 2018, vol. 2018-March, pp. 211–222. doi: 10.5220/0006699602110222.
M. Sinha, S. Guha, P. Varma, T. Mukherjee, and S. Mannarswamy, “My City, My Voice: Listening to the Citizen Views from Web Sources,” in Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, 2019, pp. 52–60. doi: 10.1145/3297001.3297008.
Q. Wang, B. Kanagal, V. Garg, and D. Sivakumar, “Constructing a Comprehensive Events Database from the Web,” in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 229–238. doi: 10.1145/3357384.3357986.
K. Watanabe, “Newsmap: A semi-supervised approach to geographical news classification,” Digit. Journal., vol. 6, no. 3, pp. 294–309, 2018, doi: 10.1080/21670811.2017.1293487.
A. Magge, D. Weissenbacher, A. Sarker, M. Scotch, and G. Gonzalez-Hernandez, “Bi-directional recurrent neural network models for geographic location extraction in biomedical literature,” Pacific Symp. Biocomput., vol. 24, no. 2019, pp. 100–111, 2019, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062760249&partnerID=40&md5=e9c6f0ef6999352b59ce19efbf0cfdfb
M.-T. Nguyen and T.-T. Nguyen, “DESRM: A Disease Extraction System for Real-Time Monitoring,” Int. J. Comput. Vis. Robot., vol. 5, no. 3, pp. 282–301, Aug. 2015, doi: 10.1504/IJCVR.2015.071341.
S. Valentin, R. Lancelot, and M. Roche, “Identifying associations between epidemiological entities in news data for animal disease surveillance,” Artif. Intell. Agric., vol. 5, pp. 163–174, 2021, doi: https://doi.org/10.1016/j.aiia.2021.07.003.
E. Resor, A. Legovini, S. Milusheva, R. Marty, G. Bedoya, and S. Williams, “Applying machine learning and geolocation techniques to social media data (Twitter) to develop a resource for urban planning,” PLoS One, vol. 16, no. 2 February, 2021, doi: 10.1371/journal.pone.0244317.
A. F. Rozie, P. Khotimah, A. Arisal, L. Sadita, and M. H. Izzaturrahim, “Location Extraction from Traffic Event-Related Text,” in Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications, 2023, pp. 331–335. doi: 10.1145/3575882.3575946.
L. C. Yang, I. K. T. Tan, B. Selvaretnam, E. K. Howg, and L. H. Kar, “TEXT: Traffic Entity EXtraction from Twitter,” in Proceedings of the 2019 5th International Conference on Computing and Data Engineering, 2019, pp. 53–59. doi: 10.1145/3330530.3330547.
R. Dutt, K. Hiware, A. Ghosh, and R. Bhaskaran, “SAVITR: A System for Real-Time Location Extraction from Microblogs during Emergencies,” in Companion Proceedings of the The Web Conference 2018, 2018, pp. 1643–1649. doi: 10.1145/3184558.3191623.
N. Eligüzel, C. Çetinkaya, and T. Dereli, “Comparison of different machine learning techniques on location extraction by utilizing geo-tagged tweets: A case study,” Adv. Eng. Informatics, vol. 46, p. 101151, 2020, doi: https://doi.org/10.1016/j.aei.2020.101151.
T. B. N. Hoang and J. Mothe, “Location extraction from tweets,” Inf. Process. Manag., vol. 54, no. 2, pp. 129–144, 2018, doi: https://doi.org/10.1016/j.ipm.2017.11.001.
L. Huang, G. Liu, T. Chen, H. Yuan, P. Shi, and Y. Miao, “Similarity-based emergency event detection in social media,” J. Saf. Sci. Resil., vol. 2, no. 1, pp. 11–19, 2021, doi: https://doi.org/10.1016/j.jnlssr.2020.11.003.
A. Kumar and J. P. Singh, “Location reference identification from tweets during emergencies: A deep learning approach,” Int. J. Disaster Risk Reduct., vol. 33, pp. 365–375, 2019, doi: https://doi.org/10.1016/j.ijdrr.2018.10.021.
L. Zou et al., “Social media for emergency rescue: An analysis of rescue requests on Twitter during Hurricane Harvey,” Int. J. Disaster Risk Reduct., vol. 85, p. 103513, 2023, doi: https://doi.org/10.1016/j.ijdrr.2022.103513.
S. Cresci, A. Cimino, F. Dell’Orletta, and M. Tesconi, “Crisis Mapping During Natural Disasters via Text Analysis of Social Media Messages,” Lect. Notes Comput. Sci., vol. 9419, pp. 250–258, 2015, doi: 10.1007/978-3-319-26187-4_21.
S. Fu, H. Lyu, Z. Wang, X. Hao, and C. Zhang, “Extracting historical flood locations from news media data by the named entity recognition (NER) model to assess urban flood susceptibility,” J. Hydrol., vol. 612, p. 128312, 2022, doi: https://doi.org/10.1016/j.jhydrol.2022.128312.
R. Grace, “Toponym usage in social media in emergencies,” Int. J. Disaster Risk Reduct., vol. 52, p. 101923, 2021, doi: https://doi.org/10.1016/j.ijdrr.2020.101923.
X. Chen, H. Zhang, J. Gelernter, H. Zhang, and J. Liu, “Multi-Lingual Geoparsing Based on Machine Translation,” Futur. Gener. Comput. Syst., vol. 96, no. C, pp. 667–677, Nov. 2019, doi: 10.1016/j.future.2017.07.057.
S. Hasni and S. Faiz, “Real-time event localization and detection over social networks using apache intelligence,” in Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA, 2018, vol. 2017-Octob, pp. 264–271. doi: 10.1109/AICCSA.2017.135.
M. Avvenuti, S. Cresci, L. Nizzoli, and M. Tesconi, “GSP (Geo-Semantic-Parsing): Geoparsing and Geotagging with Machine Learning on Top of Linked Data,” Lect. Notes Comput. Sci., vol. 10843 LNCS, pp. 17–32, 2018, doi: 10.1007/978-3-319-93417-4_2.
L. Nizzoli, M. Avvenuti, M. Tesconi, and S. Cresci, “Geo-semantic-parsing: AI-powered geoparsing by traversing semantic knowledge graphs,” Decis. Support Syst., vol. 136, p. 113346, 2020, doi: https://doi.org/10.1016/j.dss.2020.113346.
E. Aldana-Bobadilla, A. Molina-Villegas, I. Lopez-Arevalo, S. Reyes-Palacios, V. Muñiz-Sanchez, and J. Arreola-Trapala, “Adaptive geoparsing method for toponym recognition and resolution in unstructured text,” Remote Sens., vol. 12, no. 18, 2020, doi: 10.3390/RS12183041.
N. Eligüzel, C. Çetinkaya, and T. Dereli, “Application of Named Entity Recognition on Tweets during Earthquake Disaster: A Deep Learning-Based Approach,” Soft Comput., vol. 26, no. 1, pp. 395–421, Jan. 2022, doi: 10.1007/s00500-021-06370-4.
T. Qi, S. Ge, C. Wu, Y. Chen, and Y. Huang, “THU_NGN at SemEval-2019 task 12: Toponym detection and disambiguation on scientific papers,” in NAACL HLT 2019 - International Workshop on Semantic Evaluation, SemEval 2019, Proceedings of the 13th Workshop, 2019, pp. 1302–1307. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118562232&partnerID=40&md5=ac39e2164caebb4d9ca50aa8c815828a
S. Hara, A. Kubo, M. Matsuzaki, H. Kameko, and S. Mori, “Development of Methods to Extract Place Names and Estimate Their Places from Web Newspaper Articles,” in 2021 Pacific Neighborhood Consortium Annual Conference and Joint Meetings (PNC), 2021, pp. 1–6. doi: 10.23919/PNC53575.2021.9672311.
H. Mao, G. Thakur, K. Sparks, J. Sanyal, and B. Bhaduri, “Mapping near-real-time power outages from social media,” Int. J. Digit. Earth, vol. 12, no. 11, pp. 1285–1299, 2019, doi: 10.1080/17538947.2018.1535000.
R. Suwaileh, T. Elsayed, M. Imran, and H. Sajjad, “When a disaster happens, we are ready: Location mention recognition from crisis tweets,” Int. J. Disaster Risk Reduct., vol. 78, p. 103107, 2022, doi: https://doi.org/10.1016/j.ijdrr.2022.103107.
C. Berragan, A. Singleton, A. Calafiore, and J. Morley, “Transformer based named entity recognition for place name extraction from unstructured text,” Int. J. Geogr. Inf. Sci., vol. 37, no. 4, pp. 747–766, 2023, doi: 10.1080/13658816.2022.2133125.
M. Karimzadeh, S. Pezanowski, A. M. MacEachren, and J. O. Wallgrün, “GeoTxt: A scalable geoparsing system for unstructured text geolocation,” Trans. GIS, vol. 23, no. 1, pp. 118–136, 2018, doi: 10.1111/tgis.12510.
N. W. Garfinkle, L. Selig, T. K. Perkins, and G. W. Calfas, “Geoparsing text for characterizing urban operational environments through machine learning techniques,” in Proceedings of SPIE - The International Society for Optical Engineering, 2017, vol. 10199. doi: 10.1117/12.2262808.
H. N. Serere, B. Resch, and C. R. Havas, “Enhanced geocoding precision for location inference of tweet text using spaCy, Nominatim and Google Maps. A comparative analysis of the influence of data selection,” PLoS One, vol. 18, no. 3 March, 2023, doi: 10.1371/journal.pone.0282942.
A. Maheshwari, V. Kumar, G. Ramakrishnan, and J. Saketha Nath, “Entity Resolution and Location Disambiguation in the Ancient Hindu Temples Domain using Web Data,” in NAACL HLT 2018 - 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session, 2018, pp. 46–50. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096547205&partnerID=40&md5=18fbf94fe47d487ecf2d514a47ab6207
T. Awamura, E. Aramaki, D. Kawahara, T. Shibata, and S. Kurohashi, “Location Name Disambiguation Exploiting Spatial Proximity and Temporal Consistency,” in SocialNLP 2015@NAACL - 3rd International Workshop on Natural Language Processing for Social Media, Proceedings of the Workshop, 2015, pp. 1–9. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060899785&partnerID=40&md5=fa974d7700d3158989fa894620cb2459
M. Gritta, M. T. Pilehvar, and N. Collier, “Which Melbourne? Augmenting geocoding with maps,” in ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 2018, vol. 1, pp. 1285–1296. doi: 10.18653/v1/p18-1119.
A. K. Yadav, J. K. P. S. Yadav, and D. Yadav, “Spatial Ambiguities Optimization in GIR,” EAI Endorsed Trans. Scalable Inf. Syst., vol. 7, no. 28, pp. 1–8, 2020, doi: 10.4108/eai.13-7-2018.164556.
Y. L. Zaila, “Different Tools for Handling Geographic Information Retrieval Problems,” in Proceedings of the 6th Symposium on Future Directions in Information Access, 2015, pp. 62–66. doi: 10.14236/ewic/FDIA2015.16.
X. Hu, Y. Sun, J. Kersten, Z. Zhou, F. Klan, and H. Fan, “How can voting mechanisms improve the robustness and generalizability of toponym disambiguation?,” Int. J. Appl. Earth Obs. Geoinf., vol. 117, p. 103191, 2023, doi: https://doi.org/10.1016/j.jag.2023.103191.
A. Weichselbraun, P. Kuntschik, and A. M. P. Bracsoveanu, “Mining and Leveraging Background Knowledge for Improving Named Entity Linking,” in Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, 2018. doi: 10.1145/3227609.3227670.
N. R. Schneider and H. Samet, “Which Portland is It? A Machine Learning Approach,” in Proceedings of the 5th ACM SIGSPATIAL International Workshop on Location-Based Recommendations, Geosocial Networks and Geoadvertising, 2021. doi: 10.1145/3486183.3491066.
D. Kılınç, “An Accurate Toponym-Matching Measure Based on Approximate String Matching,” J. Inf. Sci., vol. 42, no. 2, pp. 138–149, Apr. 2016, doi: 10.1177/0165551515590097.