Face Recognition for Logging in Using Deep Learning for Liveness Detection on Healthcare Kiosks

Catoer Ryando - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, East Java, Indonesia
Riyanto Sigit - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, East Java, Indonesia
Setiawardhana Setiawardhana - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, East Java, Indonesia
Bima Sena Bayu Dewantara - Politeknik Elektronika Negeri Surabaya, Surabaya, 60111, East Java, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.9.1.2759

Abstract


This study explores the enhancement of healthcare kiosks by integrating facial recognition and liveness detection technologies to address the limitations of healthcare service accessibility for a growing population. Healthcare kiosks increase efficiency, lessen the strain on conventional institutions, and promote accessibility. However, there are issues with conventional authentication methods like passwords and RFID, such as the possibility of them being lost, stolen, or hacked, which raises privacy and data security problems. Although it is more secure, face recognition is susceptible to spoofing attacks. In order to improve security, this study integrates liveness detection with face recognition. Data preparation is done using deep learning algorithms, namely FaceNet and Multi-task Cascaded Convolutional Neural Networks (MTCNN). Real-time authentication of persons is verified by the system, which provides correct identification of them. Techniques for enhancing data help the model become more accurate and robust. The system's usefulness is shown by the outcomes of the experiments. The VGG16 model outperforms alternative designs like MobileNet V2, ResNet-50, and DenseNet-121, achieving 100% accuracy in liveness detection. Face recognition and liveness detection together greatly improve security, which makes it a dependable option for real-world healthcare applications. Through the ability to differentiate between genuine and fake faces and foil spoofing efforts, facial liveness detection may boost security. This study offers insights into building biometric systems for safe and effective identity verification in the healthcare industry.

Keywords


facial recognition; liveness detection; health kiosk; deep learning; computer vision

Full Text:

PDF

References


R. Sigit, Z. Arief, dan M. Mobed Bachtiar, “Development of Healthcare Kiosk for Checking Heart Health,” Emit. Int. J. Eng. Technol., vol. 3, no. 2, 2015.

M. Letafat-nejad, P. Ebrahimi, M. Maleki, dan A. Aryankhesal, “Utilization of integrated health kiosks: A systematic review,” Med. J. Islam. Repub. Iran, no. August, 2020, doi: 10.47176/mjiri.34.114.

I. D. Maramba, R. Jones, D. Austin, K. Edwards, E. Meinert, dan A. Chatterjee, “The Role of Health Kiosks: Scoping Review,” JMIR Med. Informatics, vol. 10, no. 3, 2022, doi: 10.2196/26511.

W. Cheng et al., “Evaluation of a village-based digital health kiosks program: A protocol for a cluster randomized clinical trial,” Digit. Heal., vol. 8, no. October, 2022, doi: 10.1177/20552076221129100.

S. Rahmawati, P. W. Ciptadi, dan R. H. Hardyanto, “Sistem Smart Class untuk Presensi Mahasiswa dan Akses Pintu Kelas Berbasis RFID,” Semin. Nas. Din. Inform., hal. 185–189, 2021.

M. Sucianto, C. I. Gosal, dan E. A. Lisangan, “Perancangan Prototipe Sistem Kelola Gudang Menggunakan RFID Berbasis Android,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 2, no. 2, hal. 366–375, 2022, doi: 10.24002/konstelasi.v2i2.5611.

L. Li, X. Mu, S. Li, dan H. Peng, “A Review of Face Recognition Technology,” IEEE Access, vol. 8, hal. 139110–139120, 2020, doi: 10.1109/ACCESS.2020.3011028.

C. F. Rosa, R. Amelia, dan F. Mulyasih, “Home Door Security System with Face Recognition Based on Internet of Things,” Pap. Knowl. . Towar. a Media Hist. Doc., no. 16040007, hal. 73, 2019.

M. Saini, “Liveness Detection for Face Recognition in Biometrics: A Review,” IOSR J. Comput. Eng., vol. 02, no. 02, hal. 31–36, 2016, doi: 10.9790/0661-15010020231-36.

S. Liu, Y. Song, M. Zhang, J. Zhao, S. Yang, dan K. Hou, “An identity authentication method combining liveness detection and face recognition,” Sensors (Switzerland), vol. 19, no. 21, 2019, doi: 10.3390/s19214733.

T. Hussain, D. Hussain, I. Hussain, H. AlSalman, S. Hussain, S.S. Ullah, dan S. Al-Hadhrami, "[Retracted] Internet of Things with Deep Learning-Based Face Recognition Approach for Authentication in Control Medical Systems," Computational and Mathematical Methods in Medicine, 2022.

M. Xu, S. Yoon, A. Fuentes, and D. S. Park, “A Comprehensive Survey of Image Augmentation Techniques for Deep Learning,” Pattern Recognit., vol. 137, 2023, doi: 10.1016/j.patcog.2023.

A. Setiawan, R. Sigit, dan R. Rokhana, "Face Recognition Using Convolution Neural Network Method with Discrete Cosine Transform Image for Login System," International Journal on Informatics Visualization, vol. 7, no. 2, 2023.

A.T. Aditya, R. Sigit, dan B.S.B. Dewantara, "Face Recognition Using Deep Learning as User Login on Healthcare Kiosk," in ICITEE 2022 - Proceedings of the 14th International Conference on Information Technology and Electrical Engineering, 2022.

A. Setiawan, R. Sigit, dan R. Rokhana, "Implementation of Face Recognition Using Discrete Cosine Transform on Convolutional Neural Networks," in IES 2022 - 2022 International Electronics Symposium: Energy Development for Climate Change Solution and Clean Energy Transition, Proceeding, 2022.

S. Khairnar, S. Gite, K. Kotecha, dan S. D. Thepade, “Face Liveness Detection Using Artificial Intelligence Techniques: A Systematic Literature Review and Future Directions,” Big Data Cogn. Comput., vol. 7, no. 1, 2023, doi: 10.3390/bdcc7010037.

M. Basurah, W. Swastika, dan O. H. Kelana, “Implementation of Face Recognition and Liveness Detection System Using Tensorflow.Js,” J. Inform. Polinema, vol. 9, no. 4, hal. 509–516, 2023, doi: 10.33795/jip.v9i4.1332.

J. Xiang dan G. Zhu, “Joint face detection and facial expression recognition with MTCNN,” Proc. - 2017 4th Int. Conf. Inf. Sci. Control Eng. ICISCE 2017, hal. 424–427, 2017, doi: 10.1109/ICISCE.2017.95.

S. Chakraborty dan D. Das, “An Overview of Face Liveness Detection,” Int. J. Inf. Theory, vol. 3, no. 2, hal. 11–25, 2014, doi: 10.5121/ijit.2014.3202.

X. Wang, K. Wang, and S. Lian, “A Survey on Face Data Augmentation,” no. 1, 2019, doi: 10.1007/s00521-020-04748-3.

Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, dan S. Z. Li, “A face antispoofing database with diverse attacks,” Proc. - 2012 5th IAPR Int. Conf. Biometrics, ICB 2012, hal. 26–31, 2012, doi: 10.1109/ICB.2012.6199754.

A. F. S. Moura, S. S. L. Pereira, M. W. L. Moreira, dan J. J. P. C. Rodrigues, “Video Monitoring System using Facial Recognition: A FaceNet-based Approach,” Proc. - IEEE Glob. Commun. Conf. GLOBECOM, vol. 2020-January, 2020, doi: 10.1109/GLOBECOM42002.2020.9348216.

M. Xu, S. Yoon, A. Fuentes, and D. S. Park, “A Comprehensive Survey of Image Augmentation Techniques for Deep Learning,” Pattern Recognit., vol. 137, 2023, doi: 10.1016/j.patcog.2023.109347.

X. Wang, K. Wang, and S. Lian, “A Survey on Face Data Augmentation,” no. 1, 2019, doi: 10.1007/s00521-020-04748.

S. Yang, W. Xiao, M. Zhang, S. Guo, dan J. Zhao, “Image Data Augmentation for Deep Learning : A Survey,” 2020.

E.D. Cubuk et al., "Autoaugment: Learning augmentation strategies from data," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 113-123.

M. Wang dan W. Deng, "Deep face recognition: A survey," Neurocomputing, vol. 429, pp. 215-244, 2021.

F. Schroff, D. Kalenichenko, dan J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June-2015, hal. 815–823, 2015, doi: 10.1109/CVPR.2015.7298682.

J. Deng, J. Guo, J. Yang, N. Xue, I. Kotsia, dan S. Zafeiriou, “ArcFace: Additive Angular Margin Loss for Deep Face Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, hal. 5962–5979, 2022, doi: 10.1109/TPAMI.2021.3087709.

I. William, D. R. Ignatius Moses Setiadi, E. H. Rachmawanto, H. A. Santoso, dan C. A. Sari, “Face Recognition using FaceNet (Survey, Performance Test, and Comparison),” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, no. October, 2019, doi: 10.1109/ICIC47613.2019.8985786.

L. Q. Vu, P. T. Trieu, dan H. S. Nguyen, “Implementation of FaceNet and support vector machine in a real-time web-based timekeeping application,” IAES Int. J. Artif. Intell., vol. 11, no. 1, hal. 388–396, 2022, doi: 10.11591/ijai.v11.i1.pp388-396.

A. F. S. Moura, S. S. L. Pereira, M. W. L. Moreira, dan J. J. P. C. Rodrigues, “Video Monitoring System using Facial Recognition: A FaceNet-based Approach,” Proc. - IEEE Glob. Commun. Conf. GLOBECOM, vol. 2020-January, 2020, doi: 10.1109/GLOBECOM42002.2020.9348216.