Application of Remote Sensing Data in Lithological Discrimination of Kerdous Inlier in the Anti Atlas Belt of Morocco

Amine Jellouli - Sultan Moulay Slimane University, Beni Mellal, Morocco
Abderrazak El Harti - Sultan Moulay Slimane University, Beni Mellal, Morocco
Zakaria Adiri - Sultan Moulay Slimane University, Beni Mellal, Morocco
El Mostafa Bachaoui - Sultan Moulay Slimane University, Beni Mellal, Morocco
Abderrahmane El Ghmari - Sultan Moulay Slimane University, Beni Mellal, Morocco


Citation Format:



DOI: http://dx.doi.org/10.30630/joiv.3.2-2.265

Abstract


Remote sensing data reveals a great importance for lithological mapping due to their spatial, spectral and radiometric characteristics. Lithological mapping using spatial data is a preliminary and important step to mineral mapping. In this work, several spectral and radiometric transformations methods were applied on Landsat 8 OLI data to enhance lithological units in the study area situated in the Anti Atlas belt. The methods of Optimum Index Factor (OIF), Decorrelation Stretching (DS), Principal Components Analysis (PCA) and Band Ratioing (BR) showed good results for lithological mapping in comparison with the existing geological and field investigation. An RGB color composite of OLI bands 651 was developed for mapping lithological units of the study area by fusing optimum index factor (OIF) and decorrelation stretching methods. furthermore, Band ratios derived from image spectra were applied in two RGB color composites (7+4/2, PC1, PC2)  and (PC1, 7/6, 3/7) providing good discrimination of the lithological units. The Landsat-8 OLI data significantly provided satisfied results for lithological mapping.

Keywords


Landsat 8 OLI; OIF; Anti Atlas Belt; PCA; Lithological mapping

Full Text:

PDF

References


A. Guha and K. Vinod Kumar, “New ASTER derived thermal indices to delineate mineralogy of different granitoids of an Archaean Craton and analysis of their potentials with reference to Ninomiya’s indices for delineating quartz and mafic minerals of granitoids-An analysis in Dharwar Cr,†Ore Geol. Rev., vol. 74, pp. 76–87, 2016.

A. B. Pour and M. Hashim, “The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits,†Ore Geol. Rev., vol. 44, pp. 1–9, 2012.

F. A. Kruse, J. W. Boardman, and J. F. Huntington, “Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping,†vol. 41, no. 6, pp. 1388–1400, 2003.

M. Pournamdari, M. Hashim, and A. Beiranvand, “Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex , south Iran,†Adv. Sp. Res., vol. 54, no. 4, pp. 694–709, 2014.

S. Jakob, B. Bühler, R. Gloaguen, C. Breitkreuz, H. Ali, and K. El, “Journal of African Earth Sciences Remote sensing based improvement of the geological map of the Neoproterozoic Ras Gharib segment in the Eastern Desert ( NE e Egypt ) using texture features,†J. African Earth Sci., vol. 111, pp. 138–147, 2015.

Z. Adiri, A. El Harti, A. Jellouli, L. Maacha, M. Zouhair, and E. M. Bachaoui, “Mapping copper mineralization using EO-1 Hyperion data fusion with Landsat 8 OLI and Sentinel-2A in Moroccan Anti-Atlas,†Geocarto Int., vol. 0, no. 0, pp. 1–20, 2019.

M. Anti-atlas et al., “Mineralogical mapping using Landsat-8 OLI , Terra ASTER and Sentinel-2A multispectral data in Sidi,†J. Spat. Sci., vol. 00, no. 00, pp. 1–25, 2018.

W. Ge, Q. Cheng, Y. Tang, L. Jing, and C. Gao, “Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner,†2018.

H. Van Der Werff and F. Van Der Meer, “Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing,†no. June 2015, 2016.

S. Cesar et al., “Radarsat-1 image processing for regional-scale geological mapping with mining vocation under dense vegetation and equatorial climate environment , Southwestern Cameroon,†Egypt. J. Remote Sens. Sp. Sci., vol. 21, pp. S43–S54, 2018.

S. K. Pal, T. J. Majumdar, and A. K. Bhattacharya, “ERS-2 SAR and IRS-1C LISS III data fusion : A PCA approach to improve remote sensing based geological interpretation,†vol. 61, pp. 281–297, 2007.

D. Gasquet, G. Levresse, A. Cheilletz, M. R. Azizi-Samir, and A. Mouttaqi, “Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian-Cambrian transition,†Precambrian Res., vol. 140, no. 3–4, pp. 157–182, 2005.

A. Soulaimani, A. Essaifi, N. Youbi, and A. Hafid, “Les marqueurs structuraux et magmatiques de l’extension crustale au Protérozoïque terminal-Cambrien basal autour du massif de Kerdous (Anti-Atlas occidental, Maroc),†Comptes Rendus - Geosci., vol. 336, no. 16, pp. 1433–1441, 2004.

D. P. Roy et al., “Landsat-8: Science and product vision for terrestrial global change research,†Remote Sens. Environ., vol. 145, pp. 154–172, 2014.

Z. Zhang, G. He, and X. Wang, “A practical DOS model-based atmospheric correction algorithm,†Int. J. Remote Sens., vol. 31, no. 11, pp. 2837–2852, 2010.

C. P. S, B. L, and S. L. B, “Statistical Method for Selecting Landsat MSS Ratios.â€,†J. Appl. Photogr. Eng., vol. 8, no. March, p. 23, 1982.

A. Ciampalini, F. Garfagnoli, B. Antonielli, S. Moretti, and G. Righini, “Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa,†Arab. J. Geosci., vol. 6, no. 11, pp. 4529–4546, 2013.

R. Amer, T. Kusky, and A. Ghulam, “Lithological mapping in the Central Eastern Desert of Egypt using ASTER data,†J. African Earth Sci., vol. 56, no. 2–3, pp. 75–82, 2010.

L. C. Rowan and J. C. Mars, “Lithologic mapping in the Mountain Pass , California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer ( ASTER ) data,†vol. 84, pp. 350–366, 2003.

X. Zhang, M. Pazner, and N. Duke, “Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains ( California ),†vol. 62, pp. 271–282, 2007.

Z. Adiri, A. El Harti, A. Jellouli, L. Maacha, and E. M. Bachaoui, “Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas,†vol. 10, no., pp. 16005–16014, 2016.