Using Artificial Neural Networks to Forecasting Carbon Dioxide Emissions in Iraq
DOI: http://dx.doi.org/10.62527/joiv.9.1.2456
Abstract
Keywords
Full Text:
PDFReferences
Næs, K. Kvaal, T. Isaksson, and C. Miller, “Artificial Neural Networks in Multivariate Calibration,” J Near Infrared Spectrosc, vol. 1, no. 1, pp. 1–11, Jan. 1993, doi: 10.1255/jnirs.1.
M. A. J. Van Gerven and S. M. Bohte, Artificial neural networks as models of neural information processing, 2017.
M. M. Mijwel, “Artificial neural networks advantages and disadvantages,” Mesopotamian Journal of Big Data, vol. 2021, pp. 29–31, 2021.
M. Khashei and M. Bijari, “An artificial neural network (p,d,q) model for timeseries forecasting,” Expert Syst Appl, vol. 37, no. 1, pp. 479–489, 2010, doi: 10.1016/j.eswa.2009.05.044.
K. Gurney, An introduction to neural networks. CRC press, 2018.
Z. A. B. M. K. M. A. A. Mamdouh El Haj Assad Ibrahim Mahariq, “Modeling CO2 Emission of Middle Eastern Countries Using Intelligent Methods,” Computers, Materials & Continua, vol. 69, no. 3, pp. 3767–3781, 2021, doi: 10.32604/cmc.2021.018872.
A. Shabri, “Forecasting the annual carbon dioxide emissions of Malaysia using Lasso-GMDH neural network-based,” pp. 123–127, Dec. 2022, doi: 10.1109/ISCAIE54458.2022.9794541.
A. Rana, A. S. Rawat, A. Bijalwan, and H. Bahuguna, “Application of multi layer (perceptron) artificial neural network in the diagnosis system: a systematic review,” in 2018 International conference on research in intelligent and computing in engineering (RICE), 2018, pp. 1–6.
I. C. C. ICC, M. Yehia, O. Al-Taai, and M. Ibrahim, “The Chemical Behaviour of Greenhouse Gases and its Impact on Climate Change in Iraq,” vol. 65, pp. 1373–1382, Dec. 2022, doi: 10.21608/ejchem.2022.151633.6571.
K. J. Hunt, D. Sbarbaro, R. Żbikowski, and P. J. Gawthrop, “Neural networks for control systems—A survey,” Automatica, vol. 28, no. 6, pp. 1083–1112, 1992, doi: 10.1016/0005-1098(92)90053-I.
K. Yamazaki, V.-K. Vo-Ho, D. Bulsara, and N. Le, “Spiking Neural Networks and Their Applications: A Review,” Brain Sci, vol. 12, no. 7, 2022, doi: 10.3390/brainsci12070863.
S. Singh, S. Hussain, and M. A. Bazaz, “Short term load forecasting using artificial neural network,” in 2017 Fourth International Conference on Image Information Processing (ICIIP), 2017, pp. 1–5.
I. M. Nasser and S. S. Abu-Naser, Predicting tumor category using artificial neural networks, 2019.
R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, and S. Ajayi, “Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques,” Journal of Building Engineering, vol. 45, 2022, doi: 10.1016/j.jobe.2021.103406.
N. G. Polson and V. O. Sokolov, “Deep Learning - Nature Review,” Nature, vol. 521, no. 7553, 2018.
M. Zakaria, M. Al-Shebany, and S. Sarhan, “Artificial Neural Network: A Brief Overview,” Journal of Engineering Research and Applications, vol. 4, no. 2, 2014.
S. Ahmed, “A Software Framework for Predicting the Maize Yield Using Modified Multi-Layer Perceptron,” Sustainability, vol. 15, no. 4, 2023, doi: 10.3390/su15043017.
S. P. Siregar and A. Wanto, “Analysis of artificial neural network accuracy using backpropagation algorithm in predicting process (forecasting),” IJISTECH (International Journal of Information System and Technology), vol. 1, no. 1, pp. 34–42, 2017.
J. H. Byrne, D. Ph, and T. Ut, “Introduction to Neurons and Neuronal Networks,” Cell Mol Neurobiol, vol. 1, 2012.
M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural networks-based machine learning for wireless networks: A tutorial,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019.
O. I. Abiodun et al., “Comprehensive review of artificial neural network applications to pattern recognition,” IEEE access, vol. 7, pp. 158820–158846, 2019.
O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, 2018.
S. Nosratabadi, S. Ardabili, Z. Lakner, C. Mako, and A. Mosavi, “Prediction of food production using machine learning algorithms of multilayer perceptron and ANFIS,” Agriculture, vol. 11, no. 5, p. 408, 2021.
Z. Ali et al., “Forecasting drought using multilayer perceptron artificial neural network model,” Advances in Meteorology, vol. 2017, 2017.
L. Wang, Z. Wang, H. Qu, and S. Liu, “Optimal forecast combination based on neural networks for time series forecasting,” Appl Soft Comput, vol. 66, pp. 1–17, 2018.
J. Runge and R. Zmeureanu, “Forecasting energy use in buildings using artificial neural networks: A review,” Energies (Basel), vol. 12, no. 17, p. 3254, 2019.
A. Tealab, “Time series forecasting using artificial neural networks methodologies: A systematic review,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 334–340, 2018.
M. Desai and M. Shah, “An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN),” Clinical eHealth, vol. 4, pp. 1–11, 2021.
S. Sun, L. Duan, Z. Xu, and J. Zhang, “Blind Deblurring Based on Sigmoid Function,” Sensors, vol. 21, no. 10, 2021, doi: 10.3390/s21103484.
S. Sun, L. Duan, Z. Xu, and J. Zhang, “Blind Deblurring Based on Sigmoid Function,” Sensors, vol. 21, no. 10, 2021, doi: 10.3390/s21103484.