Simulation of Land Use and Land Cover of Peatland Bengkalis Using QGIS

Fauziah Fauziah - Nasional University, Indonesia
Nur Hayati - Nasional University, Indonesia
Lilik Prasetyo - IPB University, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.9.1.2432

Abstract


The phenomenon of forest and peatland fires in Bengkalis Regency is inseparable from the change in land use and cover (LULC). The dynamic LULC in Bengkalis Regency is caused by economic factors sourced from land-based resource management. As a result, negative impacts such as environmental damage can trigger fires. Therefore, this study attempts to observe the LULC patterns on peatlands in the Bengkalis Regency using overlay techniques using QGIS. QGIS functions unlock the software's full potential, empowering you to manipulate data, automate workflows, create custom expressions, and perform advanced spatial analysis—all within a single platform. There are 12 LULC that can be identified on peatlands in Bengkalis Regency, including plantations (42.98%), primary forests (42.68%), shrubs (12.29%), residential and activity areas (0.71%), fields/farmlands (0.64%), lakes/ponds (0.43%), empty/bare land (0.18%), rivers (0.05%), and ponds, ponds, mangrove forests, and rice fields ranging from 0.004% to 0.008%. In addition, in the Bengkalis Regency, concession areas of at least 175,081.19 Ha are in the Peatland Ecosystem Protection Function (FLEG). LULC simulation provides a powerful tool for assessing the potential impact of various development plans and policies on society, the economy, and the environment, enabling more sustainable and responsible choices. A comprehensive understanding of land use and land-cover patterns is essential for further research on sustainable resource management and climate change mitigation. While LULC research has advanced significantly, several critical questions require further investigation

Keywords


Peatland; LULC; Bengkalis Regency; QGIS; FLEG

Full Text:

PDF

References


Ministry of Environment and Forestry Republic of Indonesia, “Minister of Environment Regulation Number 7 of 2006 concerning Procedures for Measuring Standard Criteria for Soil Damage for Biomass Production AI,” 2006. [Online]. Available: http://perpustakaan.menlhk.go.id/pustaka/home/index.php?page=ebook&code=kp&view=yes&id=444

Ministry of Agriculture of the Republic of Indonesia, “Minister of Agriculture Regulation Number 14/permentan/pl.110/2/2009 of 2009 concerning Guidelines for Utilizing Peat Land for Palm Oil Cultivation,” 2009. [Online]. Available: https://peraturan.go.id/id/permentan-no-14-permentan-pl-110-2-2009-tahun-2009

Ministry of Forestry of the Republic of Indonesia, “Minister of Forestry Regulation Number P.69/menhut-ii/2011 of 2011 concerning Technical Instructions for the Use of Special Allocation Funds (dak) for the Forestry Sector for the 2012 Fiscal Year,” 2011. [Online]. Available: https://peraturan.go.id/id/permenhut-no-p-69-menhut-ii-2011-tahun-2011

S. Ritung, “Sosialisasi Peta Gambut BBSDLP 2019,” Perubahan Luasan Lahan Gambut Dari Has. Pemutakhiran Pemetaan Lahan Gambut, 2019.

H. Hayasaka, “Peatland Fire Weather Conditions in Sumatra, Indonesia,” Climate, vol. 11, no. 5, 2023, doi: 10.3390/cli11050092.

T. Davies-Barnard, J. L. Catto, A. B. Harper, M. A. Imron, and F. J. Frank van Veen, “Future fire risk under climate change and deforestation scenarios in tropical Borneo,” Environ. Res. Lett., vol. 18, no. 2, 2023, doi: 10.1088/1748-9326/acb225.

N. Rumbang et al., “Estimation of Carbon pool in various agricultural crops in peatlands of West and Central Kalimantan, Indonesia,” J. Exp. Biol. Agric. Sci., vol. 11, no. 1, pp. 199–208, 2023, doi: 10.18006/2023.11(1).199.208.

I. B. M. Brasika, “The Role of El Nino Variability and Peatland in Burnt Area and Emitted Carbon in Forest Fire Modeling,” For. Soc., vol. 6, no. 1, pp. 84–103, 2022, doi: 10.24259/fs.v6i1.10671.

S. N. Koplitz et al., “Public health impacts of the severe haze in Equatorial Asia in September-October 2015: Demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure,” Environ. Res. Lett., vol. 11, no. 9, 2016, doi: 10.1088/1748-9326/11/9/094023.

W. Purwanto, R. Hidayat, and A. Utami, “Disaster Management of Forest and Peatland Fire Through The Berdikari Gambut Village Program in Pakning River, Bengkalis District,” Soc. Humanit. Educ. Stud. Conf. Ser., vol. 3, no. 1, pp. 124–132, 2020, doi: 10.20961/shes.v3i1.45024.

E. F. Lambin, H. J. Geist, and E. Lepers, “Dynamics of land-use and land-cover change in tropical regions,” Annu. Rev. Environ. Resour., vol. 28, pp. 205–241, 2003, doi: 10.1146/annurev.energy.28.050302.105459.

A. C. Spessa et al., “Seasonal forecasting of fire over Kalimantan, Indonesia,” Nat. Hazards Earth Syst. Sci., vol. 15, no. 3, pp. 429–442, 2015, doi: 10.5194/nhess-15-429-2015.

R. Hidayat, W. Purwanto, and F. Fauzan, “Utilization of Geographic Information System (GIS) For The Prevention of Land And Forest Fires As Mitigation Efforts For Peatland Disasters,” vol. 203, no. Iclick 2018, pp. 128–133, 2019, doi: 10.2991/iclick-18.2019.27.

Y. Padmini, M. S. Rao, and G. R. Rao, “Temporal Analysis of Land Use and Land Cover Changes in Vizianagaram District, Andhra Pradesh, India using Remote Sensing and GIS Techniques,” Geoplanning, vol. 10, no. 1, pp. 1–10, 2023, doi: 10.14710/GEOPLANNING.10.1.1-10.

S. Li, M. Abdelkareem, and N. Al-Arifi, “Mapping Groundwater Prospective Areas Using Remote Sensing and GIS-Based Data Driven Frequency Ratio Techniques and Detecting Land Cover Changes in the Yellow River Basin, China,” Land, vol. 12, no. 4, 2023, doi: 10.3390/land12040771.

M. A. Widiawaty, A. Ismail, M. Dede, and N. Nurhanifah, “Modeling Land Use and Land Cover Dynamic Using Geographic Information System and Markov-CA,” Geosfera Indones., vol. 5, no. 2, p. 210, 2020, doi: 10.19184/geosi.v5i2.17596.

E. Rustiadi et al., “Study of oil palm plantation on peatland under spatial policies in Jambi Province, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1025, no. 1, 2022, doi: 10.1088/1755-1315/1025/1/012004.

R. Maurya, V. S. Negi, and B. W. Pandey, “Spatio-temporal analysis of land use/land cover change through overlay technique in Kinnaur district of Himachal pradesh, Western Himalaya,” Sustain. Agri, Food Environ. Res., vol. 9, no. 1, 2021, doi: 10.7770/safer-v0n0-art2161.

S. I. Maulana, L. Syaufina, L. B. Prasetyo, and M. N. Aidi, “A spatial decision support system for peatland fires prediction and prevention in Bengkalis Regency, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 528, no. 1, 2020, doi: 10.1088/1755-1315/528/1/012052.

S. I. Maulana, L. Syaufina, L. B. Prasetyo, and M. N. Aidi, “Spatial logistic regression models for predicting peatland fire in Bengkalis Regency, Indonesia,” J. Sustain. Sci. Manag., vol. 14, no. 3, pp. 55–66, 2019.

D. Arisanty, R. Ismi, H. K. Puji, P. H. P. Nugroho, and E. W. Abbas, “Peatland Fire Mitigation: Indigenous People’s Way in Surviving Economic and Ecological Sustainability,” Disaster Adv., vol. 15, no. 9, pp. 1–7, 2022, doi: 10.25303/1509da01007.

J. Connolly and N. M. Holden, “Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery,” Carbon Balance Manag., vol. 12, no. 1, 2017, doi: 10.1186/s13021-017-0075-z.

A. Amgoth, H. P. Rani, and K. V. Jayakumar, “Exploring LULC changes in Pakhal Lake area, Telangana, India using QGIS MOLUSCE plugin,” Spat. Inf. Res., vol. 31, no. 4, pp. 429–438, 2023, doi: 10.1007/s41324-023-00509-1.

Turmudi and M. Fahrudin, “Peatland Management Based on Hydrological Characteristics at Peatland Rangsang Island, Kepulauan Meranti Regency,” IOP Conf. Ser. Earth Environ. Sci., vol. 1062, no. 1, 2022, doi: 10.1088/1755-1315/1062/1/012036.

R. Januar, E. N. N. Sari, and S. Putra, “Dynamics of local governance: The case of peatland restoration in Central Kalimantan, Indonesia,” Land use policy, vol. 102, no. December 2020, p. 105270, 2021, doi: 10.1016/j.landusepol.2020.105270.

Y. A. Karmila, K. Mizuno, A. Maas, and H. G. Saiya, “Adaptation management to minimize land fires in peatland hydrological unit Bengkalis Island,” IOP Conf. Ser. Earth Environ. Sci., vol. 802, no. 1, 2021, doi: 10.1088/1755-1315/802/1/012010.

G. Yasada, E. Y. Setyono, and I. K. Sutapa, “Three-dimensional (3D) land contour modeling using QGIS software on topography mapping in Buwit Village, Kediri District, Tabanan Regency, Bali,” Int. Res. J. Eng. IT Sci. Res., vol. 9, no. 5, pp. 223–230, 2023, doi: 10.21744/irjeis.v9n5.2373.

M. Jayabaskaran and B. Das, “Land Use Land Cover (LULC) Dynamics by CA-ANN and CA-Markov Model Approaches: A Case Study of Ranipet Town, India,” Nat. Environ. Pollut. Technol., vol. 22, no. 3, pp. 1251–1265, 2023, doi: 10.46488/NEPT.2023.v22i03.013.

M. Meraj and A. Javed, “Land Use/Land Cover (LULC) Dynamics in a Semi-Arid Watershed in Eastern Rajasthan, India Using Geospatial Tools,” J. Geogr. Inf. Syst., vol. 14, no. 06, pp. 612–633, 2022, doi: 10.4236/jgis.2022.146035.

B. V. Ramanamurthy and N. Victorbabu, “Land Use Land Cover (LULC) classification with wasteland demarcation using remote sensing and GIS techniques,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1025, no. 1, 2021, doi: 10.1088/1757-899X/1025/1/012035.

M. Kamaraj and S. Rangarajan, “Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin,” Environ. Sci. Pollut. Res., vol. 29, no. 57, pp. 86337–86348, 2022, doi: 10.1007/s11356-021-17904-6.

S. Lamichhane and N. M. Shakya, “Land Use Land Cover (LULC) Change Projection in Kathmandu Valley using the CLUE-S Model,” J. Adv. Coll. Eng. Manag., vol. 6, pp. 221–233, 2021, doi: 10.3126/jacem.v6i0.38361.

Q. Jiang, X. He, J. Wang, J. Wen, H. Mu, and M. Xu, “Spatiotemporal analysis of land use and land cover (Lulc) changes and precipitation trends in Shanghai,” Appl. Sci., vol. 10, no. 21, pp. 1–21, 2020, doi: 10.3390/app10217897.

S. P. Padma et al., “Simulation of Land Use/Land Cover Dynamics Using Google Earth Data and QGIS: A Case Study on Outer Ring Road, Southern India,” Sustain., vol. 14, no. 24, 2022, doi: 10.3390/su142416373.

Ministry of Environment and Forestry, Ministerial Decree No. 130/MENLHK/SETJEN/PKL.0/2/2017 on Peatland Protection and Management, Jakarta, Indonesia, 2017

. [36] A. Rzeźnik, M. Sojda, and J. Ślusarczyk, "Visualization of Smart Specialisation Process Using QGIS Tools," in 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 2020, pp. 1–6. DOI: 10.23919/SpliTech49282.2020.9243741

Government of Indonesia, "Government Regulation No. 57 of 2016 amending Government Regulation No. 71 of 2014 concerning the Protection and Management of Peat Ecosystems," Official Gazette of the Republic of Indonesia, No. 260, Supplement No. 5957, December 6, 2016.

Global Forest Watch, "Interactive Forest Map & Tree Cover Change Data," World Resources Institute, 2023