TPPSO: A Novel Two-Phase Particle Swarm Optimization

Tareq Shami - University of York, York, United Kingdom
Mhd Summakieh - Multimedia University, Selangor, Malaysia
Mohammed Alswaitti - University of Luxembourg, Luxembourg
Majan Jahdhami - A Sharqiyah University, Ibra, Oman
Abdul Sheikh - A Sharqiyah University, Ibra, Oman
Ayman El-Saleh - A Sharqiyah University, Ibra, Oman

Citation Format:



Particle swarm optimization (PSO) is a stout and rapid searching algorithm that has been used in various applications. Nevertheless, its major drawback is the stagnation problem that arises in the later phases of the search process. To solve this problem, a proper balance between investigation and manipulation throughout the search process should be maintained. This article proposes a new PSO variant named two-phases PSO (TPPSO). The concept of TPPSO is to split the search process into two phases. The first phase performs the original PSO operations with linearly decreasing inertia weight, and its objective is to focus on exploration. The second phase focuses on exploitation by generating two random positions in each iteration that are close to the global best position. The two generated positions are compared with the global best position sequentially. If a generated position performs better than the global best position, then it replaces the global best position. To prove the effectiveness of the proposed algorithm, sixteen popular unimodal, multimodal, shifted, and rotated benchmarking functions have been used to compare its performance with other existing well-known PSO variants and non-PSO algorithms. Simulation results show that TPPSO outperforms the other modified and hybrid PSO variants regarding solution quality, convergence speed, and robustness. The convergence speed of TPPSO is extremely fast, making it a suitable optimizer for real-world optimization problems.


Particle swarm optimization; global optimization; swarm intelligence; exploration; exploitation; Evolutionary algorithms (EAs)

Full Text:



J. Kennedy, R. Eberhart, and B. Gov, “Particle Swarm Optimization.â€

R. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory.â€

E. Shahamatnia, I. DorotoviÄ, J. M. Fonseca, and R. A. Ribeiro, “An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points,†J. Sp. Weather Sp. Clim., vol. 6, 2016, doi: 10.1051/swsc/2016010.

C. H. Jang, F. Hu, F. He, J. Li, and D. Zhu, “Low-Redundancy Large Linear Arrays Synthesis for Aperture Synthesis Radiometers Using Particle Swarm Optimization,†IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2179–2188, Jun. 2016, doi: 10.1109/TAP.2016.2543755.

A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,†IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255, Jun. 2004, doi: 10.1109/TEVC.2004.826071.

K. Luu, M. Noble, A. Gesret, N. Belayouni, and P. F. Roux, “A parallel competitive Particle Swarm Optimization for non-linear first arrival traveltime tomography and uncertainty quantification,†Comput. Geosci., vol. 113, pp. 81–93, Apr. 2018, doi: 10.1016/j.cageo.2018.01.016.

M. Abdulkadir, A. H. M. Yatim, and S. T. Yusuf, “An improved PSO-based MPPT control strategy for photovoltaic systems,†Int. J. Photoenergy, vol. 2014, 2014, doi: 10.1155/2014/818232.

P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M. Valdez, “Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic,†Expert Syst. Appl., vol. 40, no. 8, pp. 3196–3206, Jun. 2013, doi: 10.1016/j.eswa.2012.12.033.

L. Zhang, Y. Tang, C. Hua, and X. Guan, “A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques,†Appl. Soft Comput. J., vol. 28, pp. 138–149, 2015, doi: 10.1016/j.asoc.2014.11.018.

Q. Liu, “Order-2 stability analysis of particle swarm optimization,†Evol. Comput., vol. 23, no. 2, pp. 187–216, Jun. 2015, doi: 10.1162/EVCO_a_00129.

K. R. Harrison, A. P. Engelbrecht, and B. M. Ombuki-Berman, “Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm,†Swarm Evol. Comput., vol. 41, pp. 20–35, Aug. 2018, doi: 10.1016/j.swevo.2018.01.006.

M. B. Shafik, H. Chen, G. I. Rashed, R. A. El-Sehiemy, M. R. Elkadeem, and S. Wang, “Adequate topology for efficient energy resources utilization of active distribution networks equipped with soft open points,†IEEE Access, vol. 7, pp. 99003–99016, 2019, doi: 10.1109/ACCESS.2019.2930631.

H. Liu, X. W. Zhang, and L. P. Tu, “A modified particle swarm optimization using adaptive strategy,†Expert Syst. Appl., vol. 152, Aug. 2020, doi: 10.1016/j.eswa.2020.113353.

Y. Shi and R. Eberhart, “A Modified Particle Swarm Optimizer.â€

Institute of Electrical and Electronics Engineers and IEEE Computational Intelligence Society, 2020 IEEE Congress on Evolutionary Computation (CEC) : 2020 conference proceedings. 2020, 2020.

P. J. Angeline, “Using Selection to Improve Particle Swarm Optimization,†1998. [Online]. Available:

Z. Beheshti and S. M. Siti, “CAPSO: Centripetal accelerated particle swarm optimization,†Inf. Sci. (Ny)., vol. 258, pp. 54–79, Feb. 2014, doi: 10.1016/j.ins.2013.08.015.

J. Dash, B. Dam, and R. Swain, “Optimal design of linear phase multi-band stop filters using improved cuckoo search particle swarm optimization,†Appl. Soft Comput. J., vol. 52, pp. 435–445, Mar. 2017, doi: 10.1016/j.asoc.2016.10.024.

W.-J. Zhang and X.-F. Xie, “DEPSO: Hybrid Particle Swarm with Differential Evolution Operator,†2003.

N. Higashi and H. Iba, “Particle Swarm Optimization with Gaussian Mutation,†2003.

P. S. Andrews, “An Investigation into Mutation Operators for Particle Swarm Optimization,†2006.

P. S. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni, “Particle swarm and ant colony algorithms hybridized for improved continuous optimization,†Appl. Math. Comput., vol. 188, no. 1, pp. 129–142, May 2007, doi: 10.1016/j.amc.2006.09.098.

Y. P. Chen, W. C. Peng, and M. C. Jian, “Particle swarm optimization with recombination and dynamic linkage discovery,†IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 37, no. 6, pp. 1460–1470, Dec. 2007, doi: 10.1109/TSMCB.2007.904019.

Y. T. Kao and E. Zahara, “A hybrid genetic algorithm and particle swarm optimization for multimodal functions,†Appl. Soft Comput. J., vol. 8, no. 2, pp. 849–857, Mar. 2008, doi: 10.1016/j.asoc.2007.07.002.

M. S. Kiran, M. Gündüz, and Ö. K. Baykan, “A novel hybrid algorithm based on particle swarm and ant colony optimization for finding the global minimum,†Appl. Math. Comput., vol. 219, no. 4, pp. 1515–1521, Nov. 2012, doi: 10.1016/j.amc.2012.06.078.

H. C. Tsai, Y. Y. Tyan, Y. W. Wu, and Y. H. Lin, “Gravitational particle swarm,†Appl. Math. Comput., vol. 219, no. 17, pp. 9106–9117, 2013, doi: 10.1016/j.amc.2013.03.098.

T. Jamrus, C. F. Chien, M. Gen, and K. Sethanan, “Hybrid Particle Swarm Optimization Combined With Genetic Operators for Flexible Job-Shop Scheduling Under Uncertain Processing Time for Semiconductor Manufacturing,†IEEE Trans. Semicond. Manuf., vol. 31, no. 1, pp. 32–41, Feb. 2017, doi: 10.1109/TSM.2017.2758380.

M. Sharma and J. K. Chhabra, “Sustainable automatic data clustering using hybrid PSO algorithm with mutation,†Sustain. Comput. Informatics Syst., vol. 23, pp. 144–157, Sep. 2019, doi: 10.1016/j.suscom.2019.07.009.

Y. Heryadi, “A Hybrid Particle Swarm Optimization With Crossover and Mutation of Genetic Algorithm for Solving the Wide Constraint Problem,†2019.

Y. Ding, K. Zhou, and W. Bi, “Feature selection based on hybridization of genetic algorithm and competitive swarm optimizer,†Soft Comput., vol. 24, no. 15, pp. 11663–11672, Aug. 2020, doi: 10.1007/s00500-019-04628-6.

N. Kumar Yadav, “Hybridization of Particle Swarm Optimization with Differential Evolution for Solving Combined Economic Emission Dispatch Model for Smart Grid,†2019.

G. F. Fan, L. L. Peng, X. Zhao, and W. C. Hong, “Applications of hybrid EMD with PSO and GA for an SVR-based load forecasting model,†Energies, vol. 10, no. 11, Nov. 2017, doi: 10.3390/en10111713.

S. A. Mogaji, B. K. Alese, A. O. Adetunmbi, M. S. Alaba, A. B. Kayode, and A. Adebayo, “Validation of Hybridized Particle Swarm Optimization (PSO) Algorithm with the Pheromone Mechanism of Ant Colony Optimization (ACO) using Standard Benchmark Function. Securing Networks and Cyber-physical Systems View project Validation of Hybridized Partic,†2018. [Online]. Available:

R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: Simpler, maybe better,†IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 204–210, Jun. 2004, doi: 10.1109/TEVC.2004.826074.

X. Li, “Niching without niching parameters: Particle swarm optimization using a ring topology,†IEEE Trans. Evol. Comput., vol. 14, no. 1, pp. 150–169, Feb. 2009, doi: 10.1109/TEVC.2009.2026270.

J. Kennedy and K.-J. Gov, “Population Structure and Particle Swarm Performance,†2002.

J. Kennedy and K.-J. Gov, “Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance,†1999.

A. Lin, W. Sun, H. Yu, G. Wu, and H. Tang, “Global genetic learning particle swarm optimization with diversity enhancement by ring topology,†Swarm Evol. Comput., vol. 44, pp. 571–583, Feb. 2019, doi: 10.1016/j.swevo.2018.07.002.

N. Lynn, M. Z. Ali, and P. N. Suganthan, “Population topologies for particle swarm optimization and differential evolution,†Swarm Evol. Comput., vol. 39, pp. 24–35, Apr. 2018, doi: 10.1016/j.swevo.2017.11.002.

X. Hao, N. Yao, J. Wang, and L. Wang, “Distributed resource allocation optimisation algorithm based on particle swarm optimisation in wireless sensor network,†IET Commun., vol. 14, no. 17, pp. 2990–2999, Oct. 2020, doi: 10.1049/iet-com.2020.0368.

A. A. El-Saleh, T. M. Shami, R. Nordin, M. Y. Alias, and I. Shayea, “Multi-objective optimization of joint power and admission control in cognitive radio networks using enhanced swarm intelligence,†Electron., vol. 10, no. 2, pp. 1–27, Jan. 2021, doi: 10.3390/electronics10020189.

O. Evsutin, A. Shelupanov, R. Meshcheryakov, D. Bondarenko, and A. Rashchupkina, “The algorithm of continuous optimization based on the modified cellular automaton,†Symmetry (Basel)., vol. 8, no. 9, 2016, doi: 10.3390/sym8090084.

O. Almomani, “A Hybrid Model Using Bio-Inspired Metaheuristic Algorithms for Network Intrusion Detection System,†Comput. Mater. Contin., vol. 68, no. 1, pp. 409–429, Mar. 2021, doi: 10.32604/cmc.2021.016113.

M. H. Alkinani, E. A. Zanaty, and S. M. Ibrahim, “Medical image compression based on wavelets with particle swarm optimization,†Comput. Mater. Contin., vol. 67, no. 2, pp. 1577–1593, 2021, doi: 10.32604/cmc.2021.014803.

J. Wang, Y. Gao, C. Zhou, R. Simon Sherratt, and L. Wang, “Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs,†Comput. Mater. Contin., vol. 62, no. 2, pp. 695–711, 2020, doi: 10.32604/cmc.2020.08674.

E. N. Al-Khanak et al., “A heuristics-based cost model for scientific workflow scheduling in cloud,†Comput. Mater. Contin., vol. 67, no. 3, pp. 3265–3282, Mar. 2021, doi: 10.32604/cmc.2021.015409.

M. El Mamoun, Z. Mahmoud, and S. Kaddour, “SVM model selection using PSO for learning handwritten Arabic characters,†Comput. Mater. Contin., vol. 61, no. 3, pp. 995–1008, 2019, doi: 10.32604/cmc.2019.08081.

S. K. Gopalakrishnan, S. Kinattingal, S. P. Simon, and K. A. Kumar, “Enhanced energy harvesting from shaded PV systems using an improved particle swarm optimisation,†IET Renew. Power Gener., vol. 14, no. 9, pp. 1471–1480, Jul. 2020, doi: 10.1049/iet-rpg.2019.0936.

H. Xiang, M. Peng, Y. Sun, and S. Yan, “Mode Selection and Resource Allocation in Sliced Fog Radio Access Networks: A Reinforcement Learning Approach,†IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4271–4284, Apr. 2020, doi: 10.1109/TVT.2020.2972999.

D. T. C. Lai, M. Miyakawa, and Y. Sato, “Semi-supervised data clustering using particle swarm optimisation,†Soft Comput., vol. 24, no. 5, pp. 3499–3510, Mar. 2020, doi: 10.1007/s00500-019-04114-z.

T. R. Farshi, J. H. Drake, and E. Özcan, “A multimodal particle swarm optimization-based approach for image segmentation,†Expert Syst. Appl., vol. 149, Jul. 2020, doi: 10.1016/j.eswa.2020.113233.

T. Gao, B. Cao, and M. Zhang, “Multiobjective Complex Network Clustering Based on Dynamical Decomposition Particle Swarm Optimization,†IEEE Access, vol. 8, pp. 32341–32352, 2020, doi: 10.1109/ACCESS.2020.2972123.

B. Kizielewicz and W. Sałabun, “A new approach to identifying a multi-criteria decision model based on stochastic optimization techniques,†Symmetry (Basel)., vol. 12, no. 9, Sep. 2020, doi: 10.3390/SYM12091551.

C. Qin and X. Gu, “Article improved PSO algorithm based on exponential center symmetric inertiaweight function and its application in infrared image enhancement,†Symmetry (Basel)., vol. 12, no. 2, Feb. 2020, doi: 10.3390/sym12020248.

Z. Ma, X. Yuan, S. Han, D. Sun, and Y. Ma, “Improved chaotic particle swarm optimization algorithm with more symmetric distribution for numerical function optimization,†Symmetry (Basel)., vol. 11, no. 7, Jul. 2019, doi: 10.3390/sym11070876.

B. Y. Qu, P. N. Suganthan, and S. Das, “A distance-based locally informed particle swarm model for multimodal optimization,†IEEE Trans. Evol. Comput., vol. 17, no. 3, pp. 387–402, 2013, doi: 10.1109/TEVC.2012.2203138.

K. Tang et al., “Benchmark Functions for the CEC’2008 Special Session and Competition on Large Scale Global Optimization,†2007. [Online]. Available:

J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,†IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295, Jun. 2006, doi: 10.1109/TEVC.2005.857610.

M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, and H. Faris, “MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems,†Appl. Soft Comput. J., vol. 97, Dec. 2020, doi: 10.1016/j.asoc.2020.106761.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,†Adv. Eng. Softw., vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JOIV : International Journal on Informatics Visualization
ISSN 2549-9610  (print) | 2549-9904 (online)
Organized by Society of Visual Informatocs, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W :
E :,,

View JOIV Stats

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.