Grade Classification of Agarwood Sapwood Using Deep Learning
DOI: http://dx.doi.org/10.62527/joiv.8.4.2257
Abstract
Keywords
Full Text:
PDFReferences
S. Ngadiran et al., “The induction techniques of resinous agarwood formation: A review,” Bioresour Technol Rep, vol. 21, p. 101337, Feb. 2023, doi: 10.1016/J.BITEB.2023.101337.
R. Kalra and N. Kaushik, “A review of chemistry, quality and analysis of infected agarwood tree (Aquilaria sp.),” Phytochemistry Reviews, vol. 16, no. 5, pp. 1045–1079, Oct. 2017, doi: 10.1007/S11101-017-9518-0/METRICS.
P. Shivanand, N. F. Arbie, S. Krishnamoorthy, and N. Ahmad, “Agarwood—The Fragrant Molecules of a Wounded Tree,” Molecules 2022, Vol. 27, Page 3386, vol. 27, no. 11, p. 3386, May 2022, doi: 10.3390/MOLECULES27113386.
Y. Yulizah, J. S. Rahajoe, A. D. Fefirenta, and A. A. Nugroho, “THE POPULATION AND DISTRIBUTION OF AGARWOOD PRODUCING TREE (AQUILARIA MALACCENSIS) IN RIAU PROVINCE,” Reinwardtia, vol. 21, no. 1, pp. 1–11, Jun. 2022, doi: 10.55981/REINWARDTIA.2022.3874.
W. Dwianto et al., “Anatomical observation and characterization on basic properties of Agarwood (Gaharu) as an Appendix II CITES,” IOP Conf Ser Earth Environ Sci, vol. 374, no. 1, p. 012062, Nov. 2019, doi: 10.1088/1755-1315/374/1/012062.
I. M. Mega and I. W. Nuarsa, “Effect of Fungal Inoculation to Resin Content on Gaharu Plants (Gyrinops Versteegii (Gilg.) Domke),” International Journal of Environment and Geosciences, vol. 3, no. 1, pp. 10–16, Jun. 2019, doi: 10.24843/IJEG.2019.V03.I01.P02.
A. Selvaraj, A. Ezhilarasan, S. Lilly, J. Wellington, and A. R. Sam, “Digital image steganalysis: A survey on paradigm shift from machine learning to deep learning based techniques,” IET Image Process, vol. 15, no. 2, pp. 504–522, Feb. 2021, doi: 10.1049/IPR2.12043.
A. Esteva et al., “A guide to deep learning in healthcare,” Nature Medicine 2019 25:1, vol. 25, no. 1, pp. 24–29, Jan. 2019, doi: 10.1038/s41591-018-0316-z.
C. M. Jin, Z. Omar, and M. H. Jaward, “A mobile application of American sign language translation via image processing algorithms,” Proceedings - 2016 IEEE Region 10 Symposium, TENSYMP 2016, pp. 104–109, Jul. 2016, doi: 10.1109/TENCONSPRING.2016.7519386.
E. Gibson et al., “NiftyNet: a deep-learning platform for medical imaging,” Comput Methods Programs Biomed, vol. 158, pp. 113–122, May 2018, doi: 10.1016/J.CMPB.2018.01.025.
E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, and D. Van Valen, “Deep learning for cellular image analysis,” Nature Methods 2019 16:12, vol. 16, no. 12, pp. 1233–1246, May 2019, doi: 10.1038/s41592-019-0403-1.
J. Yang and J. Li, “Application of deep convolution neural network,” 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2017, vol. 2018-February, pp. 229–232, Oct. 2017, doi: 10.1109/ICCWAMTIP.2017.8301485.
C. Ghandour, W. El-Shafai, and S. El-Rabaie, “Medical image enhancement algorithms using deep learning-based convolutional neural network,” Journal of Optics (India), pp. 1–11, Jan. 2023, doi: 10.1007/S12596-022-01078-6/METRICS.
S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, “Medical Image Analysis using Convolutional Neural Networks: A Review,” J Med Syst, vol. 42, no. 11, pp. 1–13, Nov. 2018, doi: 10.1007/S10916-018-1088-1/METRICS.
J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes, and A. Valenzuela, “A Review of Convolutional Neural Network Applied to Fruit Image Processing,” Applied Sciences 2020, Vol. 10, Page 3443, vol. 10, no. 10, p. 3443, May 2020, doi: 10.3390/APP10103443.
R. M. James and A. Sunyoto, “Detection of CT - Scan Lungs COVID-19 Image Using Convolutional Neural Network and CLAHE,” 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020, pp. 302–307, Nov. 2020, doi: 10.1109/ICOIACT50329.2020.9332069.
C. R. Rahman et al., “Identification and recognition of rice diseases and pests using convolutional neural networks,” Biosyst Eng, vol. 194, pp. 112–120, Jun. 2020, doi: 10.1016/J.BIOSYSTEMSENG.2020.03.020.
N. D. Girsang, “Literature Study of Convolutional Neural Network Algorithm for Batik Classification,” Brilliance: Research of Artificial Intelligence, vol. 1, no. 1, pp. 1–7, Sep. 2021, doi: 10.47709/BRILLIANCE.V1I1.1069.
T. Horikawa and Y. Kamitani, “Generic decoding of seen and imagined objects using hierarchical visual features,” Nature Communications 2017 8:1, vol. 8, no. 1, pp. 1–15, May 2017, doi: 10.1038/ncomms15037.
A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of deep convolutional neural networks,” Artificial Intelligence Review 2020 53:8, vol. 53, no. 8, pp. 5455–5516, Apr. 2020, doi: 10.1007/S10462-020-09825-6.
R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and application in radiology,” Insights Imaging, vol. 9, no. 4, pp. 611–629, Aug. 2018, doi: 10.1007/S13244-018-0639-9/FIGURES/15.
J. Choi, H. J. Lee, K. Sohn, H. S. Yu, and C. E. Rhee, “Accelerating CNN Training with Concurrent Execution of GPU and Processing-In-Memory,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3488004.
P. Kumar and A. S. Hati, “Convolutional neural network with batch normalisation for fault detection in squirrel cage induction motor,” IET Electr Power Appl, vol. 15, no. 1, pp. 39–50, Jan. 2021, doi: 10.1049/ELP2.12005.
S. Nadeemhashmi, H. Gupta, D. Mittal, K. Kumar, A. Nanda, and S. Gupta, “A Lip Reading Model Using CNN with Batch Normalization,” 2018 11th International Conference on Contemporary Computing, IC3 2018, Nov. 2018, doi: 10.1109/IC3.2018.8530509.
C. Tian, Y. Xu, and W. Zuo, “Image denoising using deep CNN with batch renormalization,” Neural Networks, vol. 121, pp. 461–473, Jan. 2020, doi: 10.1016/J.NEUNET.2019.08.022.
R. O. Ogundokun, R. Maskeliunas, S. Misra, and R. Damaševičius, “Improved CNN Based on Batch Normalization and Adam Optimizer,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13381 LNCS, pp. 593–604, 2022, doi: 10.1007/978-3-031-10548-7_43/COVER.
A. S. Darma and F. S. B. Mohamad, “The Regularization Effect of Pre-activation Batch Normalization on Convolutional Neural Network Performance for Face Recognition System Paper,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 11, pp. 300–310, Jan. 2021, doi: 10.14569/IJACSA.2021.0121135.
L. Chen, H. Fei, Y. Xiao, J. He, and H. Li, “Why batch normalization works? a buckling perspective,” 2017 IEEE International Conference on Information and Automation, ICIA 2017, pp. 1184–1189, Oct. 2017, doi: 10.1109/ICINFA.2017.8079081.
P. Hamet and J. Tremblay, “Artificial intelligence in medicine,” Metabolism, vol. 69, pp. S36–S40, Apr. 2017, doi: 10.1016/J.METABOL.2017.01.011.
S. Webb, “Deep learning for biology,” Nature, vol. 554, no. 7693, pp. 555–557, Feb. 2018, doi: 10.1038/D41586-018-02174-Z.
M. Jogin, Mohana, M. S. Madhulika, G. D. Divya, R. K. Meghana, and S. Apoorva, “Feature extraction using convolution neural networks (CNN) and deep learning,” 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2018 - Proceedings, pp. 2319–2323, May 2018, doi: 10.1109/RTEICT42901.2018.9012507.
X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, and M. Parmar, “A review of convolutional neural networks in computer vision,” Artif Intell Rev, vol. 57, no. 4, pp. 1–43, Apr. 2024, doi: 10.1007/S10462-024-10721-6/FIGURES/33.
M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Computation 2023, Vol. 11, Page 52, vol. 11, no. 3, p. 52, Mar. 2023, doi: 10.3390/COMPUTATION11030052.
S. Yuan, G. Song, G. Huang, and Q. Wang, “Reshaping Hyperspectral Data into a Two-Dimensional Image for a CNN Model to Classify Plant Species from Reflectance,” Remote Sensing 2022, Vol. 14, Page 3972, vol. 14, no. 16, p. 3972, Aug. 2022, doi: 10.3390/RS14163972.
Q. Wang, B. Zhao, H. Ma, J. Chang, and G. Mao, “A method for rapidly evaluating reliability and predicting remaining useful life using two-dimensional convolutional neural network with signal conversion,” Journal of Mechanical Science and Technology, vol. 33, no. 6, pp. 2561–2571, Jun. 2019, doi: 10.1007/S12206-019-0504-X/METRICS.
Mambang and F. D. Marleny, “Image Prediction of Exact Science and Social Science Learning Content with Convolutional Neural Network,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 4, pp. 749–754, Dec. 2022, doi: 10.30630/JOIV.6.4.923.
I. Tabian, H. Fu, and Z. S. Khodaei, “A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures,” Sensors 2019, Vol. 19, Page 4933, vol. 19, no. 22, p. 4933, Nov. 2019, doi: 10.3390/S19224933.
B. Casella, R. Esposito, A. Sciarappa, C. Cavazzoni, and M. Aldinucci, “Experimenting With Normalization Layers in Federated Learning on Non-IID Scenarios,” IEEE Access, vol. 12, pp. 47961–47971, 2024, doi: 10.1109/ACCESS.2024.3383783.
W. Alsobhi, T. Alafif, W. Zong, and A. E. Abdel-Hakim, “Adaptive Batch Normalization for Training Data with Heterogeneous Features,” International Conference on Smart Computing and Application, ICSCA 2023, 2023, doi: 10.1109/ICSCA57840.2023.10087711.
W. M. Fatihia, A. Fariza, and T. Karlita, “CNN with Batch Normalization Adjustment for Offline Hand-written Signature Genuine Verification,” JOIV : International Journal on Informatics Visualization, vol. 7, no. 1, pp. 200–207, Feb. 2023, doi: 10.30630/JOIV.7.1.1443.
A. Hyvärinen and E. Oja, “Independent component analysis: Algorithms and applications,” Neural Networks, vol. 13, no. 4–5, pp. 411–430, 2000, doi: 10.1016/S0893-6080(00)00026-5.
T. R. V. Lakshmi and C. V. Krishna Reddy, “Classification of Skin Lesions by Incorporating Drop-Block and Batch Normalization Layers in Representative CNN Models,” Arab J Sci Eng, vol. 49, no. 3, pp. 3671–3684, Mar. 2024, doi: 10.1007/S13369-023-08131-X/METRICS.
A. Septiarini, A. Sunyoto, H. Hamdani, A. A. Kasim, F. Utaminingrum, and H. R. Hatta, “Machine vision for the maturity classification of oil palm fresh fruit bunches based on color and texture features,” Sci Hortic, vol. 286, p. 110245, Aug. 2021, doi: 10.1016/J.SCIENTA.2021.110245.