A scoping review and bibliometric analysis (ScoRBA) on dengue infection and machine learning research
DOI: http://dx.doi.org/10.62527/joiv.8.4.2249
Abstract
Dengue, a fast-spreading vector-borne infectious disease, requires early prediction and prompt decision-making for effective control. To address this issue, we present a comprehensive scoping review and bibliometric analysis (ScoRBA) that aims to map the current literature landscape, identify main research themes, and offer valuable insights into advancements and challenges in dengue infection and machine learning research. Materials for this analysis consist of scholarly articles related to dengue and machine learning research retrieved from the Scopus database. Our method involves a rigorous literature examination, utilizing keyword co-occurrence analysis. Our study reveals a growing interest in dengue and machine learning research, reflected in an increasing number of publications. Through keyword co-occurrence analysis, we identify four major research themes: Data mining using machine learning for dengue prediction, Deep learning approach for dengue prediction models, Neural network optimization for dengue diagnostic systems, and Climate-driven dengue prediction with IoT & remote sensing. Advancements include substantial improvements in prediction models through machine learning and IoT integration, albeit with identified limitations, necessitating ongoing research and refinement. Our findings hold direct implications for public health professionals, academics, and decision-makers, offering data-driven strategies for dengue outbreak control. The identified research themes act as a roadmap for future investigations, guiding the development of more robust tools for early prediction and decision-making in the battle against dengue. This study contributes to understanding the evolving landscape of dengue research, facilitating informed actions to mitigate the impact of this infectious disease.
Keywords
Full Text:
PDFReferences
WHO, “Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue,” WHO.
Q. Jing and M. Wang, “Dengue epidemiology,” J Glob Health, vol. 3, no. 2, 2019, doi: 10.1016/j.glohj.2019.06.002.
B. H. Kok, H. T. Lim, C. P. Lim, N. S. Lai, C. Y. Leow, and C. H. Leow, “Dengue virus infection – a review of pathogenesis, vaccines, diagnosis and therapy,” Virus Research, vol. 324. 2023. doi: 10.1016/j.virusres.2022.199018.
M. U. G. Kraemer et al., “The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus,” Elife, vol. 4, no. JUNE2015, 2015, doi: 10.7554/eLife.08347.
R. E. Baker et al., “Infectious disease in an era of global change,” Nature Reviews Microbiology, vol. 20, no. 4. 2022. doi: 10.1038/s41579-021-00639-z.
E. Sylvestre et al., “Data-driven methods for dengue prediction and surveillance using real-world and Big Data: A systematic review,” PLoS Neglected Tropical Diseases, vol. 16, no. 1. 2022. doi: 10.1371/journal.pntd.0010056.
S. Runge-Ranzinger, O. Horstick, M. Marx, and A. Kroeger, “What does dengue disease surveillance contribute to predicting and detecting outbreaks and describing trends?,” Tropical Medicine and International Health, vol. 13, no. 8. 2008. doi: 10.1111/j.1365-3156.2008.02112.x.
L. May, J. P. Chretien, and J. A. Pavlin, “Beyond traditional surveillance: Applying syndromic surveillance to developing settings-opportunities and challenges,” BMC Public Health, vol. 9, 2009, doi: 10.1186/1471-2458-9-242.
Z. Li and J. Dong, “Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review,” Remote Sensing, vol. 14, no. 19. 2022. doi: 10.3390/rs14195052.
D. Yu and C. Fang, “Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades,” Remote Sensing, vol. 15, no. 5. 2023. doi: 10.3390/rs15051307.
M. Carabali, L. M. Hernandez, M. J. Arauz, L. A. Villar, and V. Ridde, “Why are people with dengue dying? A scoping review of determinants for dengue mortality,” BMC Infect Dis, vol. 15, no. 1, 2015, doi: 10.1186/s12879-015-1058-x.
C. Fritzell, D. Rousset, A. Adde, M. Kazanji, M. D. Van Kerkhove, and C. Flamand, “Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: A scoping review,” PLoS Negl Trop Dis, vol. 12, no. 7, 2018, doi: 10.1371/journal.pntd.0006533.
A. W. Maula, A. Fuad, and A. Utarini, “Ten-years trend of dengue research in Indonesia and South-east Asian countries: a bibliometric analysis,” Glob Health Action, vol. 11, no. 1, 2018, doi: 10.1080/16549716.2018.1504398.
J. A. Cedano, B. L. Mora, L. G. Parra-Lara, R. Manzano-Nuñez, and F. Rosso, “A scoping review of transmission of dengue virus from donors to recipients after solid organ transplantation,” Trans R Soc Trop Med Hyg, vol. 113, no. 8, 2019, doi: 10.1093/trstmh/trz024.
E. Parselia et al., “Satellite Earth Observation data in epidemiological modeling of malaria, dengue and West Nile Virus: A scoping review,” Remote Sensing, vol. 11, no. 16. 2019. doi: 10.3390/rs11161862.
E. Pilot, V. Nittas, and G. V. S. Murthy, “The organization, implementation, and functioning of dengue surveillance in india—a systematic scoping review,” Int J Environ Res Public Health, vol. 16, no. 4, 2019, doi: 10.3390/ijerph16040661.
M. A. Carrillo, A. Kroeger, R. Cardenas Sanchez, S. Diaz Monsalve, and S. Runge-Ranzinger, “The use of mobile phones for the prevention and control of arboviral diseases: a scoping review,” BMC Public Health, vol. 21, no. 1, 2021, doi: 10.1186/s12889-020-10126-4.
N. Dewan, D. Zuluaga, L. Osorio, M. E. Krienke, C. Bakker, and J. Kirsch, “Ultrasound in Dengue: A Scoping Review,” Am J Trop Med Hyg, vol. 104, no. 3, 2021, doi: 10.4269/ajtmh.20-0103.
S. Y. Liu, T. W. Chien, T. Y. Yang, Y. T. Yeh, W. Chou, and J. C. Chow, “A bibliometric analysis on dengue outbreaks in tropical and sub-tropical climates worldwide since 1950,” Int J Environ Res Public Health, vol. 18, no. 6, 2021, doi: 10.3390/ijerph18063197.
L. Hussain-Alkhateeb, T. R. Ramírez, A. Kroeger, E. Gozzer, and S. Runge-Ranzinger, “Early warning systems (EWSs) for Chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review,” PLoS Neglected Tropical Diseases, vol. 15, no. 9. 2021. doi: 10.1371/journal.pntd.0009686.
V. E. Fiestas Solórzano, R. C. de Lima, and E. L. de Azeredo, “The Role of Growth Factors in the Pathogenesis of Dengue: A Scoping Review,” Pathogens, vol. 11, no. 10. 2022. doi: 10.3390/pathogens11101179.
M. A. Kulkarni, C. Duguay, and K. Ost, “Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews,” Global Health, vol. 18, no. 1, 2022, doi: 10.1186/s12992-021-00793-2.
B. P. Teh et al., “Carica papaya Leaf Juice for Dengue: A Scoping Review,” Nutrients, vol. 14, no. 8. 2022. doi: 10.3390/nu14081584.
A. Wijaya, N. A. Setiawan, A. H. Ahmad, R. Zakaria, and Z. Othman, “Electroencephalography and mild cognitive impairment research: A scoping review and bibliometric analysis (ScoRBA),” AIMS Neuroscience, vol. 10, no. 2. 2023. doi: 10.3934/NEUROSCIENCE.2023012.
H. Arksey and L. O’Malley, “Scoping studies: Towards a methodological framework,” International Journal of Social Research Methodology: Theory and Practice, vol. 8, no. 1, 2005, doi: 10.1080/1364557032000119616.
W. Hoyos, J. Aguilar, and M. Toro, “Dengue models based on machine learning techniques: A systematic literature review,” Artificial Intelligence in Medicine, vol. 119. 2021. doi: 10.1016/j.artmed.2021.102157.
R. Pranckutė, “Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world,” Publications, vol. 9, no. 1. 2021. doi: 10.3390/publications9010012.
J. Zhu and W. Liu, “A tale of two databases: the use of Web of Science and Scopus in academic papers,” Scientometrics, vol. 123, no. 1, 2020, doi: 10.1007/s11192-020-03387-8.
P. Benckendorff and A. Zehrer, “A network analysis of tourism research,” Ann Tour Res, vol. 43, 2013, doi: 10.1016/j.annals.2013.04.005.
Y. I. Abu Bakar, A. Hassan, M. S. B. Yusoff, F. Kasim, H. Abdul Manan @ Sulong, and S. N. H. Hadie, “A Scoping Review of Effective Teaching Strategies in Surface Anatomy,” Anat Sci Educ, vol. 15, no. 1, 2022, doi: 10.1002/ase.2067.
M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” The BMJ, vol. 372. 2021. doi: 10.1136/bmj.n71.
J. van E. Nees and W. Ludo, Manual for VOSviewer version 1.6.19, no. 11. 2023.
C. Bradbury-Jones, L. Isham, A. J. Morris, and J. Taylor, “The ‘Neglected’ Relationship Between Child Maltreatment and Oral Health? An International Scoping Review of Research,” Trauma, Violence, and Abuse, vol. 22, no. 2. 2021. doi: 10.1177/1524838019841598.
R. Pawson, “Evidence-based Policy: In Search of a Method,” Evaluation, vol. 8, no. 2, 2002, doi: 10.1177/1358902002008002512.
S. Anno et al., “Spatiotemporal dengue fever hotspots associated with climatic factors in taiwan including outbreak predictions based on machine-learning,” Geospat Health, vol. 14, no. 2, 2019, doi: 10.4081/gh.2019.771.
F. Khalique, R. Shaheen, and S. A. Khan, “Spatio-temporal investigations of dengue fever in Pakistan through an HL7 based public health framework for hotspot analysis,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3027234.
G. Singh and B. Soman, “Spatiotemporal epidemiology and forecasting of dengue in the state of Punjab, India: Study protocol,” Spat Spatiotemporal Epidemiol, vol. 39, 2021, doi: 10.1016/j.sste.2021.100444.
K. Roster, C. Connaughton, and F. A. Rodrigues, “Machine-Learning-Based Forecasting of Dengue Fever in Brazilian Cities Using Epidemiologic and Meteorological Variables,” Am J Epidemiol, vol. 191, no. 10, 2022, doi: 10.1093/aje/kwac090.
A. Siddiq, N. Shukla, and B. Pradhan, “Spatio-temporal modelling of dengue fever cases in Saudi Arabia using socio-economic, climatic and environmental factors,” Geocarto Int, vol. 37, no. 26, 2022, doi: 10.1080/10106049.2022.2072005.
L. A. Barboza et al., “Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques,” PLoS Negl Trop Dis, vol. 17, no. 1, 2023, doi: 10.1371/journal.pntd.0011047.
M. S. Rahman et al., “Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach,” One Health, vol. 13, 2021, doi: 10.1016/j.onehlt.2021.100358.
Z. Zainudin and S. M. Shamsuddin, “Predictive analytics in Malaysian dengue data from 2010 until 2015 using BigML,” International Journal of Advances in Soft Computing and its Applications, vol. 8, no. 3, 2016.
G. Manogaran and D. Lopez, “Disease surveillance system for big climate data processing and dengue transmission,” in Climate Change and Environmental Concerns: Breakthroughs in Research and Practice, 2018. doi: 10.4018/978-1-5225-5487-5.ch022.
Y. Shi et al., “Three-month real-time dengue forecast models: An early warning system for outbreak alerts and policy decision support in Singapore,” Environ Health Perspect, vol. 124, no. 9, 2016, doi: 10.1289/ehp.1509981.
S. Ismail, R. Fildes, R. Ahmad, W. N. Wan Mohamad Ali, and T. Omar, “The practicality of Malaysia dengue outbreak forecasting model as an early warning system,” Infect Dis Model, vol. 7, no. 3, 2022, doi: 10.1016/j.idm.2022.07.008.
N. A. M. Salim et al., “Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques,” Sci Rep, vol. 11, no. 1, 2021, doi: 10.1038/s41598-020-79193-2.
V. H. Nguyen et al., “Deep learning models for forecasting dengue fever based on climate data in Vietnam,” PLoS Negl Trop Dis, vol. 16, no. 6, 2022, doi: 10.1371/journal.pntd.0010509.
A. R. Doni and T. Sasipraba, “Lstm-Rnn Based Approach for Prediction of Dengue Cases in India,” Ingenierie des Systemes d’Information, vol. 25, no. 3, 2020, doi: 10.18280/isi.250306.
V. N. Valencia, Y. Díaz, J. M. Pascale, M. F. Boni, and J. E. Sanchez-Galan, “Assessing the effect of climate variables on the incidence of dengue cases in the metropolitan region of panama city,” Int J Environ Res Public Health, vol. 18, no. 22, 2021, doi: 10.3390/ijerph182212108.
R. Siddiqua, S. Rahman, and J. Uddin, “A deep learning-based dengue mosquito detection method using faster r-cnn and image processing techniques,” Annals of Emerging Technologies in Computing, vol. 5, no. 3, 2021, doi: 10.33166/AETiC.2021.03.002.
P. Silitonga, A. Bustamam, H. Muradi, W. Mangunwardoyo, and B. E. Dewi, “Comparison of dengue predictive models developed using artificial neural network and discriminant analysis with small dataset,” Applied Sciences (Switzerland), vol. 11, no. 3, 2021, doi: 10.3390/app11030943.
K. D. B. Ligue and K. J. B. Ligue, “Deep Learning Approach to Forecasting Dengue Cases in Davao City Using Long Short-term Memory (LSTM),” Philipp J Sci, vol. 151, no. 3, 2022, doi: 10.56899/151.03.01.
M. A. Majeed, H. Z. M. Shafri, Z. Zulkafli, and A. Wayayok, “A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention,” Int J Environ Res Public Health, vol. 20, no. 5, 2023, doi: 10.3390/ijerph20054130.
I. U. Ekanayake, D. P. P. Meddage, and U. Rathnayake, “A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP),” Case Studies in Construction Materials, vol. 16, 2022, doi: 10.1016/j.cscm.2022.e01059.
Y. Liang, S. Li, C. Yan, M. Li, and C. Jiang, “Explaining the black-box model: A survey of local interpretation methods for deep neural networks,” Neurocomputing, vol. 419, 2021, doi: 10.1016/j.neucom.2020.08.011.
S. U. Chowdhury, S. Sayeed, I. Rashid, M. G. R. Alam, A. K. M. Masum, and M. A. A. Dewan, “Shapley-Additive-Explanations-Based Factor Analysis for Dengue Severity Prediction using Machine Learning,” J Imaging, vol. 8, no. 9, 2022, doi: 10.3390/jimaging8090229.
H. Yang, T. N. Nguyen, and T. W. Chuang, “An Integrative Explainable Artificial Intelligence Approach to Analyze Fine-Scale Land-Cover and Land-Use Factors Associated with Spatial Distributions of Place of Residence of Reported Dengue Cases,” Trop Med Infect Dis, vol. 8, no. 4, 2023, doi: 10.3390/tropicalmed8040238.
S. Karn, S. Sangole, A. Gawde, and J. Joshi, “Prediction and classification of vector-borne and communicable diseases through artificial neural networks,” in 2019 International Conference on Intelligent Computing and Control Systems, ICCS 2019, 2019. doi: 10.1109/ICCS45141.2019.9065500.
Z. Sabir, M. A. Z. Raja, S. Javeed, and Y. Guerrero-Sánchez, “NUMERICAL INVESTIGATIONS OF A FRACTIONAL NONLINEAR DENGUE MODEL USING ARTIFICIAL NEURAL NETWORKS,” Fractals, vol. 30, no. 10, 2022, doi: 10.1142/S0218348X22402411.
M. Umar, Kusen, M. A. Z. Raja, Z. Sabir, and Q. Al-Mdallal, “A computational framework to solve the nonlinear dengue fever SIR system,” Comput Methods Biomech Biomed Engin, vol. 25, no. 16, 2022, doi: 10.1080/10255842.2022.2039640.
A. Fariza, W. Yuwono, R. Akbar, R. Asmara, and I. G. K. P. Aryawan, “Mobile Based Mosquito Larvae Recognition from Photo Image Using Convolutional Neural Network,” in Science and Technology Applications, 2023. doi: 10.4028/p-23an7b.
A. Samorè, M. Rusci, D. Lazzaro, P. Melpignano, L. Benini, and S. Morigi, “BrightNet: A Deep CNN for OLED-Based Point of Care Immunofluorescent Diagnostic Systems,” IEEE Trans Instrum Meas, vol. 69, no. 9, 2020, doi: 10.1109/TIM.2020.2973913.
M. M. Ramakrishna and V. Karthikeyan, “UChOA-ANN based effective diagnostic model for early detection and accurate prediction of dengue affected blood samples,” Concurr Comput, vol. 35, no. 8, 2023, doi: 10.1002/cpe.7597.
S. Ghosh, S. Biswas, D. Sarkar, and P. P. Sarkar, “Mining Frequent Itemsets Using Genetic Algorithm,” International Journal of Artificial Intelligence & Applications, vol. 1, no. 4, 2010, doi: 10.5121/ijaia.2010.1411.
B. Renuka Devi, K. Nageswara Rao, and S. Pallam Setty, “Towards better classification using improved genetic algorithm and decision tree for dengue datasets,” International Journal of Applied Engineering Research, vol. 10, no. 8, 2015.
B. D. Handari, D. Wulandari, N. A. Aquita, S. Leandra, D. Sarwinda, and G. F. Hartono, “Comparing Restricted Boltzmann Machine – Backpropagation Neural Networks, Artificial Neural Network – Genetic Algorithm and Artificial Neural Network – Particle Swarm Optimization for Predicting DHF Cases in DKI Jakarta,” Int J Adv Sci Eng Inf Technol, vol. 12, no. 6, 2022, doi: 10.18517/ijaseit.12.6.16226.
H. Mayrose et al., “Intelligent algorithm for detection of dengue using mobilenetv2-based deep features with lymphocyte nucleus,” Expert Syst, vol. 40, no. 4, 2023, doi: 10.1111/exsy.12904.
H. Mayrose, G. M. Bairy, N. Sampathila, S. Belurkar, and K. Saravu, “Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics,” Diagnostics, vol. 13, no. 2, 2023, doi: 10.3390/diagnostics13020220.
J. Xu et al., “Forecast of dengue cases in 20 chinese cities based on the deep learning method,” Int J Environ Res Public Health, vol. 17, no. 2, 2020, doi: 10.3390/ijerph17020453.
H. S. Cunha et al., “Water tank and swimming pool detection based on remote sensing and deep learning: Relationship with socioeconomic level and applications in dengue control,” PLoS One, vol. 16, no. 12 December, 2021, doi: 10.1371/journal.pone.0258681.
M. Hassan et al., “Diagnosis of dengue virus infection using spectroscopic images and deep learning,” PeerJ Comput Sci, vol. 8, 2022, doi: 10.7717/peerj-cs.985.
J. V. Bogado, C. E. Schaerer, D. H. Stalder, and G. Martínez, “Cluster-based LSTM models to improve Dengue cases forecast,” CLEI Eletronic Journal (CLEIej), vol. 26, no. 1, 2023, doi: 10.19153/cleiej.26.1.4.
M. A. Johansson, N. G. Reich, A. Hota, J. S. Brownstein, and M. Santillana, “Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico,” Sci Rep, vol. 6, 2016, doi: 10.1038/srep33707.
S. Anno et al., “Challenges and implications of predicting the spatiotemporal distribution of dengue fever outbreak in Chinese Taiwan using remote sensing data and deep learning,” Geo-Spatial Information Science, 2023, doi: 10.1080/10095020.2022.2144770.
S. N. Manoharan, K. M. V. M. Kumar, and N. Vadivelan, “A Novel CNN-TLSTM Approach for Dengue Disease Identification and Prevention using IoT-Fog Cloud Architecture,” Neural Process Lett, vol. 55, no. 2, 2023, doi: 10.1007/s11063-022-10971-x.
S. K. Sood, V. Sood, I. Mahajan, and Sahil, “Fog-Cloud Assisted IoT-Based Hierarchical Approach For Controlling Dengue Infection,” Computer Journal, vol. 65, no. 1, 2022, doi: 10.1093/comjnl/bxaa005.
S. K. Sood, A. Kaur, and V. Sood, “Energy efficient IoT-Fog based architectural paradigm for prevention of Dengue fever infection,” J Parallel Distrib Comput, vol. 150, 2021, doi: 10.1016/j.jpdc.2020.12.002.
J. Aira, T. Olivares, F. M. Delicado, and D. Vezzani, “MosquIoT: A System Based on IoT and Machine Learning for the Monitoring of Aedes aegypti (Diptera: Culicidae),” IEEE Trans Instrum Meas, vol. 72, 2023, doi: 10.1109/TIM.2023.3265119.
M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen, and Y. Zhu, “Big Data for Remote Sensing: Challenges and Opportunities,” Proceedings of the IEEE, vol. 104, no. 11, 2016, doi: 10.1109/JPROC.2016.2598228.
J. Freeze, M. Erraguntla, and A. Verma, “Data integration and predictive analysis system for disease prophylaxis: Incorporating dengue fever forecasts,” in Proceedings of the Annual Hawaii International Conference on System Sciences, 2018. doi: 10.24251/hicss.2018.114.