Enhancing Potato Leaf Disease Detection: Implementation of Convolutional Vision Transformers with Synthetic Datasets from Stable Diffusion
DOI: http://dx.doi.org/10.62527/joiv.8.4.2167
Abstract
Keywords
Full Text:
PDFReferences
U. Isbah and R. Y. Iyan, “Analisis peran sektor pertanian dalam perekonomian dan kesempatan kerja di Provinsi Riau,” Jurnal Sosial Ekonomi Pembangunan, vol. 7, no. 19, pp. 45–54, 2016.
Kementerian Pertanian, Analisis PDB Sektor Pertanian Tahun 2022 - Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian 2022, vol. 1. Jakarta Selatan: Pusat Data dan Sistem Informasi Pertanian, 2022.
Kementerian Pertanian, “Kementerian Pertanian Direktorat Jenderal Perkebunan » Kementan terus tingkatkan sumber devisa ekspor nasional dari sektor non migas.” Accessed: Jul. 16, 2023. [Online]. Available: https://ditjenbun.pertanian.go.id/kementan-terus-tingkatkan-sumber-devisa-ekspor-nasional-dari-sektor-non-migas/
Kementerian Pertanian, Pemetaan Produksi dan Konsumsi Unggulan Hortikultura Internasional, vol. 1. Jakarta Selatan: Biro Kerja Sama Luar Negeri - Kementerian Pertanian RI, 2017.
I. A. Astarini, I. G. R. M. Temaja, Kusmana, and D. Margareth, Tentang Kentang, vol. 1. Denpasar: Udayana University Press, 2019.
M. Ghosh and G. Sanyal, “Exploring the effectiveness of convolutional neural network with ensemble technique,” in Research Square, 2020. Accessed: Aug. 24, 2023. [Online]. Available: https://doi.org/10.21203/rs.2.21664/v1
C. Ren, D. K. Kim, and D. Jeong, “A Survey of Deep Learning in Agriculture: Techniques and Their Applications,” Journal of Information Processing Systems, vol. 16, no. 5, pp. 1015–1033, 2020, doi: 10.3745/JIPS.04.0187.
N. Ganatra and A. Patel, “Deep Learning Methods and Applications for Precision Agriculture,” in Lecture Notes in Networks and Systems, Springer Science and Business Media Deutschland GmbH, 2021, pp. 515–527. doi: 10.1007/978-981-15-7106-0_51.
L. Picek, M. Šulc, J. Matas, J. Heilmann-Clausen, T. S. Jeppesen, and E. Lind, “Automatic fungi recognition: Deep learning meets mycology,” Sensors, vol. 22, no. 633, pp. 1–22, Jan. 2022, doi: 10.3390/s22020633.
H. Wu et al., “CvT: Introducing convolutions to Vision Transformers,” in ArXiv, 2021, pp. 1–10. [Online]. Available: http://arxiv.org/abs/2103.15808
K. W. Seebold, “Blackleg & bacterial soft rot of potato,” 2014.
E. V. Rogozina, N. V. Mironenko, N. A. Chalaya, Y. Matsushita, and H. Yanagisawa, “Potato mosaic viruses which infect plants of tuber-bearing Solanum spp. growing in the VIR field gene bank,” Vavilovskii Zhurnal Genet Selektsii, vol. 23, no. 3, pp. 304–311, 2019, doi: 10.18699/VJ19.495.
S. Syifa Fitriyati, K. Hamzah Mutaqin, and T. Asmira Damayanti, “Taksasi kehilangan hasil oleh penyakit kerdil pada kentang di Jawa Tengah,” Jurnal Ilmu Pertanian Indonesia (JIPI), vol. 25, no. 2, pp. 205–212, 2020, doi: 10.18343/jipi.25.2.205.
U. Jayasinghe, “Potato leafroll virus PLRV,” 1988.
L. Soesanto, E. Mugiastuti, and D. R. F. Rahayuniati, “Inventarisasi dan identifikasi patogen tular-tanah pada pertanaman kentang di Kabupaten Purbalingga,” J. Hort, vol. 21, no. 3, pp. 254–264, 2011.
J. E. Van Der Waals, L. Korsten, and T. A. S. Aveling, “A review of early blight of potato,” Afr Plant Prot, vol. 7, no. 2, pp. 91–102, 2001.
J. W. Henfling, “Late Blight of Potato Phytophthora infestans,” 1987.
A. Ghosh, A. Sufian, F. Sultana, A. Chakrabarti, and D. De, “Fundamental Concepts of Convolutional Neural Network,” Intelligent Systems Reference Library, vol. 172, pp. 519–567, 2019, doi: 10.1007/978-3-030-32644-9_36.
D. Wodajo and S. Atnafu, “Deepfake video detection using convolutional vision transformer,” in arXiv, 2021, pp. 1–9. [Online]. Available: http://arxiv.org/abs/2102.11126
A. Vaswani et al., “Attention is all you need,” in ArXiv, California, 2017, pp. 1–15. [Online]. Available: http://arxiv.org/abs/1706.03762
A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” Oct. 2020, [Online]. Available: http://arxiv.org/abs/2010.11929
T. V. T Turay, “Toward Performing Image Classification and Object Detection With Convolutional Neural Networks in Autonomous Driving Systems: A Survey,” IEEE Access, 2022.
H. Wu et al., “CvT: Introducing Convolutions to Vision Transformers,” Proceedings of the IEEE/CVF international conference on computer vision, 2021.
R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in ArXiv, 2021, pp. 1–45. [Online]. Available: http://arxiv.org/abs/2112.10752
A. Watson, “Deep Learning Techniques for Super-Resolution in Video Games,” 2020, doi: https://doi.org/10.48550/arXiv.2012.09810.
P. Gholami and R. Xiao, “Diffusion Brush: A Latent Diffusion Model-based Editing Tool for AI-generated Images,” May 2023, [Online]. Available: http://arxiv.org/abs/2306.00219
X. Ying, “An Overview of Overfitting and its Solutions,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2019. doi: 10.1088/1742-6596/1168/2/022022.
A. Stöckl, “Evaluating a synthetic image dataset generated with Stable Diffusion,” in ArXiv, 2022. [Online]. Available: http://arxiv.org/abs/2211.01777
A. M. Lesmana, R. P. Fadhillah, and C. Rozikin, “Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN),” Jurnal Sains dan Informatika, vol. 8, no. 1, pp. 21–30, Jun. 2022, doi: 10.34128/jsi.v8i1.377.
M. H. Al-Adhaileh, A. Verma, T. H. H. Aldhyani, and D. Koundal, “Potato Blight Detection Using Fine-Tuned CNN Architecture,” Mathematics, vol. 11, no. 6, Mar. 2023, doi: 10.3390/math11061516.