Classification of Diabetic Retinopathy Based on Fundus Image Using InceptionV3

Agus Minarno - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia
Andhika Bagaskara - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia
Fitri Bimantoro - University of Mataram, Mataram, Indonesia
Wildan Suharso - Universitas Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang, 65144, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.9.1.2155

Abstract


Diabetic Retinopathy (DR) is a progressive eye condition that can lead to blindness, particularly affecting individuals with diabetes. It is commonly diagnosed through the examination of digital retinal images, with fundus photography being recognized as a reliable method for identifying abnormalities in the retina of diabetic patients. However, manual diagnosis based on these images is time-consuming and labor-intensive, necessitating the development of automated systems to enhance both accuracy and efficiency. Recent advancements in machine learning, particularly image classification systems, provide a promising avenue for streamlining the diagnostic process. This study aims to classify DR using Convolutional Neural Networks (CNN), explicitly employing the InceptionV3 architecture to optimize performance. This research also explores the impact of different preprocessing and data augmentation techniques on classification accuracy, focusing on the APTOS 2019 Blindness Detection dataset. Data preprocessing and augmentation are crucial steps in deep learning to enhance model generalization and mitigate overfitting. The study uses preprocessing and data augmentation to train the InceptionV3 model. Results indicate that the model achieves 86.5% accuracy on training data and 82.73% accuracy on test data, significantly improving performance compared to models trained without data augmentation. Additionally, the findings demonstrate that the absence of data augmentation leads to overfitting, as evidenced by performance graphs that show a marked decline in test accuracy relative to training accuracy. This research highlights the importance of tailored preprocessing and augmentation techniques in improving CNN models' robustness and predictive capability for DR detection. 

Keywords


Diabetic Retinopathy; Fundus Image; Convolutional Neural Network; InceptionV3; Data Augmentation

Full Text:

PDF

References


C. Vallepalli, K. C. Sekhar, R. Balaraju, and U. V. Kumar, “Dietary Habits and Drug Pattern Associated with Type 2 Diabetes Mellitus among Urban Population of Eluru City: A Cross-Sectional Study,” Indian J Public Health Res Dev, pp. 1–6, 2020, doi: 10.37506/ijphrd.v11i9.10974.

S. Rizal, N. Ibrahim, N. K. C. Pratiwi, S. Saidah, and R. Y. N. Fu’adah, “Deep Learning untuk Klasifikasi Diabetic Retinopathy menggunakan Model EfficientNet,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 8, no. 3, p. 693, 2020, doi: 10.26760/elkomika.v8i3.693.

Y. F. Rachman, K. Kusrini, and H. Al Fatta, “Klasifikasi Citra Digitalretina Penderita Diabetes Retinopati Menggunakan Metode Euclidean,” DoubleClick: Journal of Computer and Information Technology, vol. 3, no. 2, p. 75, 2020, doi: 10.25273/doubleclick.v3i2.5787.

S. Vadloori, Y. P. Huang, and W. C. Wu, “Comparison of various data mining classification techniques in the diagnosis of diabetic retinopathy,” Acta Polytechnica Hungarica, vol. 16, no. 9, pp. 27–46, 2019, doi: 10.12700/APH.16.9.2019.9.3.

S. S. Ashwin Dhakal, Laxmi Bastola, “Detection and Classification of Diabetic Retinopathy using Adaptive Boosting and Artificial Neural Network,” International Journal of Advanced Research and Publications , vol. 8, no. 3, pp. 191–197, 2019.

M. M. Butt, G. Latif, D. N. F. A. Iskandar, J. Alghazo, and A. H. Khan, “Multi-channel Convolutions Neural Network Based Diabetic Retinopathy Detection from Fundus Images,” Procedia Comput Sci, vol. 163, pp. 283–291, 2019, doi: 10.1016/j.procs.2019.12.110.

M. Arora and M. Pandey, “Deep Neural Network for Diabetic Retinopathy Detection,” Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon 2019, pp. 189–193, 2019, doi: 10.1109/COMITCon.2019.8862217.

H. Shyam Sharma, A. Singh, A. Singh Chandel, P. Singh, and A. Sapkal, “Detection of Diabetic Retinopathy using Convolutional Neural Network,” Elsevier-SSRN, 2019.

A. K. Gangwar and V. Ravi, Diabetic Retinopathy Detection Using Transfer Learning and Deep Learning, vol. 1176. Springer Singapore, 2021. doi: 10.1007/978-981-15-5788-0_64.

C. Jayakumari, V. Lavanya, and E. P. Sumesh, “Automated Diabetic Retinopathy Detection and classification using ImageNet Convolution Neural Network using Fundus Images,” Proceedings - International Conference on Smart Electronics and Communication, ICOSEC 2020, no. Icosec, pp. 577–582, 2020, doi: 10.1109/ICOSEC49089.2020.9215270.

E. Abdelmaksoud, S. Barakat, and M. Elmogy, “Diabetic retinopathy grading system based on transfer learning,” International Journal of Advanced Computer Research, vol. 11, no. 52, pp. 1–12, 2021, doi: 10.19101/ijacr.2020.1048117.

V. K. Harikrishnan, M. Vijarania, and A. Gambhir, Diabetic retinopathy identification using autoML. Elsevier Inc., 2020. doi: 10.1016/b978-0-12-820604-1.00012-1.

V. Felizardo, N. M. Garcia, N. Pombo, and I. Megdiche, “Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction – A systematic literature review,” Artif Intell Med, vol. 118, Aug. 2021, doi: 10.1016/J.ARTMED.2021.102120.

S. Jayabalan, P. S. Pratheeksha, N. S. Bolar, and N. L. Malavika, “PREDICTION OF DIABETIC RETINOPATHY USING SVM ALGORITHM,” JCR, vol. 7, no. 14, p. 1702, 2020, [Online]. Available: http://www.jcreview.com/?mno=118975

H. Liu, K. Yue, S. Cheng, C. Pan, J. Sun, and W. Li, “Hybrid model structure for diabetic retinopathy classification,” J Healthc Eng, vol. 2020, 2020, doi: 10.1155/2020/8840174.

B. Tymchenko, P. Marchenko, and D. Spodarets, “Deep Learning Approach to Diabetic Retinopathy Detection,” ICPRAM 2020 - Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods, pp. 501–509, Mar. 2020, Accessed: Sep. 21, 2021. [Online]. Available: https://arxiv.org/abs/2003.02261v1

G. Mushtaq and F. Siddiqui, “Detection of diabetic retinopathy using deep learning methodology,” IOP Conf Ser Mater Sci Eng, vol. 1070, no. 1, p. 012049, Feb. 2021, doi: 10.1088/1757-899X/1070/1/012049.

C. Lam, D. Yi, M. Guo, and T. Lindsey, “Automated Detection of Diabetic Retinopathy using Deep Learning,” AMIA Summits on Translational Science Proceedings, vol. 2018, p. 147, 2018, Accessed: Sep. 21, 2021. [Online]. Available: /pmc/articles/PMC5961805/

E. AbdelMaksoud, S. Barakat, and M. Elmogy, “Diabetic Retinopathy Grading System Based on Transfer Learning,” Dec. 2020, Accessed: Sep. 21, 2021. [Online]. Available: http://arxiv.org/abs/2012.12515

Z. Gao, J. Li, J. Guo, Y. Chen, Z. Yi, and J. Zhong, “Diagnosis of Diabetic Retinopathy Using Deep Neural Networks,” IEEE Access, vol. 7, pp. 3360–3370, 2019, doi: 10.1109/ACCESS.2018.2888639.

A. E. Minarno, M. H. C. Mandiri, Y. Azhar, F. Bimantoro, H. A. Nugroho, and Z. Ibrahim, “Classification of Diabetic Retinopathy Disease Using Convolutional Neural Network,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 1, pp. 12–18, Mar. 2022, doi: 10.30630/JOIV.6.1.857.

A. E. Minarno, L. Aripa, Y. Azhar, and Y. Munarko, “Classification of Malaria Cell Image using Inception-V3 Architecture,” JOIV : International Journal on Informatics Visualization, vol. 7, no. 2, pp. 273–278, May 2023, doi: 10.30630/JOIV.7.2.1301.

A. E. Minarno, M. Fadhlan, Y. Munarko, and D. R. Chandranegara, “Classification of Dermoscopic Images Using CNN-SVM,” JOIV : International Journal on Informatics Visualization, vol. 8, no. 2, pp. 606–612, May 2024, doi: 10.62527/JOIV.8.2.2153.

A. E. Minarno, B. Y. Sasongko, Y. Munarko, H. A. Nugroho, and Z. Ibrahim, “Convolutional Neural Network featuring VGG-16 Model for Glioma Classification,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 3, pp. 660–666, Sep. 2022, doi: 10.30630/JOIV.6.3.1230.

A. E. Minarno, B. Y. Sasongko, Y. Munarko, H. A. Nugroho, and Z. Ibrahim, “Convolutional Neural Network featuring VGG-16 Model for Glioma Classification,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 3, pp. 660–666, Sep. 2022, doi: 10.30630/JOIV.6.3.1230.

A. Jain, A. Jalui, J. Jasani, Y. Lahoti, and R. Karani, “Deep Learning for Detection and Severity Classification of Diabetic Retinopathy,” Proceedings of 1st International Conference on Innovations in Information and Communication Technology, ICIICT 2019, pp. 1–6, 2019, doi: 10.1109/ICIICT1.2019.8741456.

N. Shivsharanr and S. Ganorkar, “Predicting Severity of Diabetic Retinopathy using Deep Learning Models,” International Research Journal on Advanced Science Hub, vol. 3, no. Special Issue ICEST 1S, pp. 67–72, 2021, doi: 10.47392/irjash.2021.022.

A. P. T. O. S. (APTOS), “APTOS 2019 Blindness Detection | Kaggle.”

E. Uysal and G. E. Güraksin, “Computer-aided retinal vessel segmentation in retinal images : convolutional neural networks,” 2020.

G. Mushtaq and F. Siddiqui, “Detection of diabetic retinopathy using deep learning methodology,” IOP Conf Ser Mater Sci Eng, vol. 1070, no. 1, p. 012049, 2021, doi: 10.1088/1757-899x/1070/1/012049.

B. G.-U. of Warwick and undefined 2015, “Kaggle diabetic retinopathy detection competition report,” kaggle-forum-message-attachments …, 2015, Accessed: Jan. 20, 2025. [Online]. Available: https://kaggle-forum-message-attachments.storage.googleapis.com/88655/2795/competitionreport.pdf

C. Bhardwaj, S. Jain, and M. Sood, “Diabetic retinopathy severity grading employing quadrant-based Inception-V3 convolution neural network architecture,” Int J Imaging Syst Technol, vol. 31, no. 2, pp. 592–608, 2021, doi: 10.1002/ima.22510.

N. M. Aszemi and P. D. D. Dominic, “Hyperparameter optimization in convolutional neural network using genetic algorithms,” International Journal of Advanced Computer Science and Applications, vol. 10, no. 6, pp. 269–278, 2019, doi: 10.14569/ijacsa.2019.0100638.

H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based image recognition for autonomous driving,” IATSS Research, vol. 43, no. 4, pp. 244–252, 2019, doi: 10.1016/j.iatssr.2019.11.008.

Mobeen-Ur-Rehman, S. H. Khan, Z. Abbas, and S. M. Danish Rizvi, “Classification of Diabetic Retinopathy Images Based on Customised CNN Architecture,” Proceedings - 2019 Amity International Conference on Artificial Intelligence, AICAI 2019, pp. 244–248, 2019, doi: 10.1109/AICAI.2019.8701231.

H. Chen et al., “A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources,” Agric Water Manag, vol. 240, no. May, p. 106303, 2020, doi: 10.1016/j.agwat.2020.106303.

S. Patel, “Diabetic Retinopathy Detection and Classification using Pre-trained Convolutional Neural Networks,” International Journal on Emerging Technologies, vol. 11, no. 3, pp. 1082–1087, 2020.

S. H. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, “Impact of fully connected layers on performance of convolutional neural networks for image classification,” Neurocomputing, vol. 378, pp. 112–119, 2020, doi: 10.1016/j.neucom.2019.10.008.

Szegedy, W. Liu, Y. Jia, P. Sermanet, and S. Reed, “Going Deeper with Convolutions,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.