Text Summarization on Verdicts of Industrial Relations Disputes Using the Cross-Latent Semantic Analysis and Long Short-Term Memory

Galih Wicaksono - University of Muhammadiyah Malang, Malang, Indonesia
Muhammad Hakim - University of Muhammadiyah Malang, Malang, Indonesia
Nur Hayatin - University of Muhammadiyah Malang, Malang, Indonesia
Nur Hidayah - University of Muhammadiyah Malang, Malang, Indonesia
Tiara Sari - University of Muhammadiyah Malang, Malang, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.30630/joiv.7.3.2052


The information presented in the documents regarding industrial relations disputes constitutes four legal disputes. However, too much information leads to difficulty for readers to find essential points highlighted in industrial relations dispute documents. This research aims to summarize automated documents of court decisions over industrial relations disputes with permanent legal force. This research involved 35 documents of court decisions obtained from Indonesia’s official Supreme Court website and employed an extractive summarization approach to summarize the documents by utilizing Cross Latent Semantic Analysis (CLSA) and Long Short-Term Memory (LSTM) methods. The two methods are compared to obtain the best results CLSA was employed to analyze the connection between phrases, requiring the ordering of related words before they were converted into a complete summary. Then, the use of LSTM is combined with the Attention module to decoder and encoder the information entered so that it becomes a form that can be understood by the system and provides a variety of splitting of documents to be trained and tested to see the highest performance that the system can generate. The research has found out that the CLSA method gave a precision of 79.1%, recall score of 39.7%, and ROUGE-1 score of 50.9%, and the use of LSTM was able to improve the performance of the CLSA method with the results obtained 93.6%, recall score of 94.5 %, and ROUGE-1 score of 93.9% on the variation of splitting 95% training and 5% testing.


extractive summarization; cross latent semantic analysis; long short-term memory; legal document

Full Text:



M. O. Riedl, “Human-centered artificial intelligence and machine learning,†Hum. Behav. Emerg. Technol., vol. 1, no. 1, pp. 33–36, 2019, doi: 10.1002/hbe2.117.

D. C. Brock, “Learning from artificial intelligence’s previous awakenings: The history of expert systems,†AI Magazine, vol. 39, no. 3, pp. 3–15, 2018.

I. Roll and R. Wylie, “Evolution and Revolution in Artificial Intelligence in Education,†Int. J. Artif. Intell. Educ., vol. 26, no. 2, pp. 582–599, 2016, doi: 10.1007/s40593-016-0110-3.

G. Malik, D. K. Tayal, and S. Vij, “An Analysis of the Role of Artificial Intelligence in Education and Teaching,†Adv. Intell. Syst. Comput., vol. 707, pp. 407–417, 2019, doi: 10.1007/978-981-10-8639-7_42.

K. Y. Lee and J. Kim, “Artificial Intelligence Technology Trends and IBM Watson References in the Medical Field,†Korean Med. Educ. Rev., vol. 18, no. 2, pp. 51–57, 2016, doi: 10.17496/kmer.2016.18.2.51.

L. Cui, S. Huang, F. Wei, C. Tan, C. Duan, and M. Zhou, “Superagent: A customer service chatbot for E-commerce websites,†ACL 2017 - 55th Annu. Meet. Assoc. Comput. Linguist. Proc. Syst. Demonstr., pp. 97–102, 2017, doi: 10.18653/v1/P17-4017.

B. Alarie, A. Niblett, and A. H. Yoon, “How artificial intelligence will affect the practice of law,†University of Toronto Law Journal, vol. 68, no. March 2017. pp. 106–124, 2018, doi: 10.3138/utlj.2017-0052.

K. Yoko, V. C. Mawardi, and J. Hendryli, “SISTEM PERINGKAS OTOMATIS ABSTRAKTIF DENGAN MENGGUNAKAN RECURRENT NEURAL NETWORK,†Comput. J. Comput. Sci. Inf. Syst., vol. 2, no. 1, p. 65, 2018, doi: 10.24912/computatio.v2i1.1481.

X. Duan et al., “Legal summarization for multi-role debate dialogue via controversy focus mining and multi-task learning,†Int. Conf. Inf. Knowl. Manag. Proc., pp. 1361–1370, 2019, doi: 10.1145/3357384.3357940.

A. Kanapala, S. Pal, and R. Pamula, “Text summarization from legal documents: a survey,†Artif. Intell. Rev., vol. 51, no. 3, pp. 371–402, 2019, doi: 10.1007/s10462-017-9566-2.

N. F. Saraswati, Indriati, and R. S. Perdana, “Peringkasan Teks Otomatis Menggunakan Metode Maximum Marginal Relevance Pada Hasil Pencarian Sistem Temu Kembali Informasi Untuk Artikel Berbahasa Indonesia,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 5494–5502, 2018, doi: 10.1016/s1010-6030(01)00380-x.

N. Savanti, W. Gotami, and R. K. Dewi, “Peringkasan Teks Otomatis Secara Ekstraktif Pada Artikel Berita Kesehatan Berbahasa Indonesia Dengan Menggunakan Metode Latent Semantic Analysis,†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 2821–2828, 2018.

Y. M. Sari and N. S. Fatonah, “Automatic Text Summarization in Indonesian Language Learning Module Using Cross Latent Semantic Analysis (CLSA) Method,†J. Edukasi dan Penelit. Inform., vol. 7, no. 2, p. 153, 2021, doi: 10.26418/jp.v7i2.47768.

G. Mandar and G. Gunawan, “Peringkasan dokumen berita bahasa indonesia menggunakan metode cross latent semantic analysis,†Regist. J. Ilm. Teknol. Sist. Inf., vol. 3, no. 2, pp. 94–104, 2017, doi: 10.26594/register.v3i2.1161.

D. Suleiman and A. A. Awajan, “Deep Learning Based Extractive Text Summarization: Approaches, Datasets and Evaluation Measures,†in 2019 6th International Conference on Social Networks Analysis, Management and Security, SNAMS 2019, Oct. 2019, pp. 204–210, doi: 10.1109/SNAMS.2019.8931813.

W. Jiang, Y. Zou, T. Zhao, Q. Zhang, and Y. Ma, “A hierarchical bidirectional LSTM sequence model for extractive text summarization in electric power systems,†in Proceedings - 2020 13th International Symposium on Computational Intelligence and Design, ISCID 2020, Dec. 2020, pp. 290–294, doi: 10.1109/ISCID51228.2020.00071.

R. M. Patel and A. J. Goswami, “Abstractive Text Summarization with LSTM using Beam Search Inference Phase Decoder and Attention Mechanism,†Jun. 2021, doi: 10.1109/ICCISc52257.2021.9484880.

R. Karmakar, K. Nirantar, P. Kurunkar, P. Hiremath, and D. Chaudhari, “Indian Regional Language Abstractive Text Summarization using Attention-based LSTM Neural Network,†Jun. 2021, doi: 10.1109/CONIT51480.2021.9498309.

D. Patel, N. Shah, V. Shah, and V. Hole, “Abstractive Text Summarization on Google Search Results,†Proc. Int. Conf. Intell. Comput. Control Syst. ICICCS 2020, pp. 538–543, May 2020, doi: 10.1109/ICICCS48265.2020.9120998.

K. Merchant and Y. Pande, “NLP Based Latent Semantic Analysis for Legal Text Summarization,†in 2018 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018, Nov. 2018, pp. 1803–1807, doi: 10.1109/ICACCI.2018.8554831.

K. Agrawal, “Legal case summarization: An application for text summarization,†Jan. 2020, doi: 10.1109/ICCCI48352.2020.9104093.

A. W. Pradana and M. Hayaty, “The Effect of Stemming and Removal of Stopwords on the Accuracy of Sentiment Analysis on Indonesian-language Texts,†Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 375–380, 2019, doi: 10.22219/kinetik.v4i4.912.

A. Tabassum and R. R. Patil, “A Survey on Text Pre-Processing & Feature Extraction Techniques in Natural Language Processing,†Int. Res. J. Eng. Technol., no. June, pp. 4864–4867, 2020.

S. Alam and N. Yao, “The impact of preprocessing steps on the accuracy of machine learning algorithms in sentiment analysis,†Comput. Math. Organ. Theory, vol. 25, no. 3, pp. 319–335, 2019, doi: 10.1007/s10588-018-9266-8.

S. Vijayarani, M. J. Ilamathi, M. Nithya, A. Professor, and M. P. Research Scholar, “Preprocessing Techniques for Text Mining -An Overview,†vol. 5, no. 1, pp. 7–16.

A. Amalia, D. Gunawan, Y. Fithri, and I. Aulia, “Automated Bahasa Indonesia essay evaluation with latent semantic analysis,†J. Phys. Conf. Ser., vol. 1235, no. 1, 2019, doi: 10.1088/1742-6596/1235/1/012100.

K. Al-Sabahi, Z. Zhang, J. Long, and K. Alwesabi, “An Enhanced Latent Semantic Analysis Approach for Arabic Document Summarization,†Arab. J. Sci. Eng., vol. 43, no. 12, pp. 8079–8094, 2018, doi: 10.1007/s13369-018-3286-z.

J. W. G. Putra, “Pengenalan Konsep Pembelajaran Mesin dan Deep Learning,†vol. 4, no. August, pp. 1–235, 2019.

G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory model,†Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–5955, 2020, doi: 10.1007/s10462-020-09838-1.

H. Chung and K. S. Shin, “Genetic algorithm-optimized long short-term memory network for stock market prediction,†Sustain., vol. 10, no. 10, 2018, doi: 10.3390/su10103765.

K. Kurniawan and S. Louvan, “INDOSUM : A New Benchmark Dataset for Indonesian Text Summarization,†2018 Int. Conf. Asian Lang. Process., pp. 215–220, 2018.

S. Ghodratnama, A. Beheshti, M. Zakershahrak, and F. Sobhanmanesh, “Extractive Document Summarization Based on Dynamic Feature Space Mapping,†IEEE Access, vol. 8, pp. 139084–139095, 2020, doi: 10.1109/ACCESS.2020.3012539.