K-Means Clustering Algorithm for Partitioning the Openness Levels of Open Government Data Portals

Emigawaty Emigawaty - Universitas Amikom, Sleman, Yogyakarta, 55281, Indonesia
Kusworo Adi - Universitas Diponegoro, Tembalang, Semarang, 50275, Indonesia
Adian Fatchur Rochim - Universitas Diponegoro, Tembalang, Semarang, 50275, Indonesia
Budi Warsito - Universitas Diponegoro, Tembalang, Semarang, 50275, Indonesia
Adi Wibowo - Universitas Diponegoro, Tembalang, Semarang, 50275, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.30630/joiv.7.3.1761


More and more local governments in Indonesia are making their data available to the public. This benefits data scientists, researchers, business owners, and other potential users seeking datasets for empirical research and business innovation. However, just because Open Government Data (OGD) portals are accessible does not mean that they necessarily adhere to the established rules and principles of data openness. To evaluate the level of openness of 24 OGD portals in Indonesia, this study used the K-means Clustering algorithm to partition them into three levels: Leaders, Followers, and Beginners. A group of 30 participants, including researchers, data scientists, business enablers, and graduate students, rated the portals on 32 sub-questions related to the eight main principles of data disclosure, focusing on health, population, and education datasets. The study found that eight portals were categorized as Leaders, ten as Followers, and seven as Beginners regarding their level of openness. The study demonstrated that the K-means Clustering algorithm can be effectively used to assess the degree of openness of OGD portals in Indonesia based on eight main principles of data openness. The study recommends increasing the number of OGD portals in eastern territories to supplement the existing case studies in the western and central regions.


K-Means; Clustering; Open Government Data; Portals

Full Text:



A. Luthfi dan M. Janssen, “A conceptual model of decision-making support for opening data,†in Communications in Computer and Information Science, 2017, vol. 792, doi: 10.1007/978-3-319-71117-1_7.

S. de Juana-Espinosa dan S. Luján-Mora, de Juana-Espinosa, S., & Luján-Mora, S. (2020). Open government data portals in the European Union: A dataset from 2015 to 2017, vol. 29. 2020.

M. Malacaria, S., De Mauro, A., Greco, M., & Grimaldi, “An Application of the Analytic Hierarchy Process to the Evaluation of Companies’ Data Maturity,†ICEIS, vol. 1, hal. 50–61, 2022.

X. Zhu dan M. A. Freeman, “An evaluation of US municipal open data portals: A user interaction framework,†J. Assoc. Inf. Sci. Technol., vol. 70, no. 1, 2019, doi: 10.1002/asi.24081.

M. Wen., “Leading successful government-academia collaborations using FLOSS and agile values,†J. Syst. Softw., vol. 164, 2020, doi: 10.1016/j.jss.2020.110548.

Y. Charalabidis, A. Zuiderwijk, C. Alexopoulos, M. Janssen, T. Lampoltshammer, dan E. Ferro, The World of Open Data: Concepts, Methods, Tools and Experiences. Granada: Springer International, 2018.

O. Belkahla Driss, S. Mellouli, dan Z. Trabelsi, “From citizens to government policy-makers: Social media data analysis,†Gov. Inf. Q., vol. 36, no. 3, 2019, doi: 10.1016/j.giq.2019.05.002.

Y. Lixin, X., & Li, “Research on Maturity Assessment of Local Open Government Data Portals,†Libr. Inf. Serv., vol. 63, no. 12, 2019.

L. Ayre, “Open Data: What It Is and Why You Should Care,†Jim Craner, vol. 36, no. 2, hal. 173–184, 2017, doi: DOI:10.1080/01616846.2017.1313045.

D. Matheus, R., Janssen, M., & Maheshwari, “Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities,†Gov. Inf. Q., vol. 37, no. 3, 2022.

B. B. Ansari, “Enhancing the usability and usefulness of open government data: A comprehensive review of the state of open government data visualization research,†Gov. Inf. Q., vol. 39, no. 4, 2021, doi: DOI:10.1016/j.giq.2021.101657.

A. Luthfi dan M. Janssen, “Toward a Reference Architecture for User-Oriented Open Government Data Portals,†in International Symposium on Business Modeling and Software Design, 2022, hal. 259–267, doi: https://doi.org/10.1007/978-3-031-11510-3_17.

T. Jetzek, M. Avital, dan N. Bjorn-Andersen, “The Sustainable Value of Open Government Data,†J. Assoc. Inf. Syst., vol. 20, no. 6, hal. 702–734, 2019, doi: DOI:10.17705/1jais.00549.

A. Abella, M. Ortiz-de-Urbina-Criado, dan C. De-Pablos-Heredero, “Criteria for the identification of ineffective open data portals: pretender open data portals,†Prof. la Inf., vol. 31, no. 1, 2022, doi: https://doi.org/10.3145/epi.2022.ene.11.

R. Máchová, M. Hub, dan M. LnÄ›niÄka, “Usability evaluation of open data portals: Evaluating data discoverability, accessibility, and reusability from a stakeholders’ perspective,†Aslib J. Inf. Manag., vol. 70, no. 4, 2018, doi: DOI:10.1108/AJIM-02-2018-0026.

G. M.Begany, E. G.Martin, dan X. (Jenny) Yuan, “Open government data portals: Predictors of site engagement among early users of Health Data NY,†Gov. Inf. Q., vol. 38, no. 4, 2021, doi: https://doi.org/10.1016/j.giq.2021.101614.

T. Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, “Data governance: Organizing data for trustworthy Artificial Intelligence,†Gov. Inf. Q., vol. 37, no. 3, 2020.

A. Twizeyimana, J. D., & Andersson, “The public value of E-Government–A literature review,†Gov. Inf. Q., vol. 36, no. 2, hal. 167–178, 2019.

R. Pereira, G. V., Parycek, P., Falco, E., & Kleinhans, “Smart governance in the context of smart cities:A literature review,†Inf. Polity, vol. 23, no. 2, hal. 143–162, 2018.

P. Glyptis, L., Christofi, M., Vrontis, D., Del Giudice, M., Dimitriou, S., & Michael, “E-Government implementation challenges in small countries: The project manager’s perspective,†Technol. Forecast. Soc. Change, vol. 152, 2020.

A. Quarati, M. De Martino, dan S. Rosim, “Geospatial open data usage and metadata quality,†J. Inf. Sci., 2021, [Daring]. Tersedia pada: https://www.mdpi.com/959152.

N. Janssen, M., & Helbig, “Innovating and changing the policy-cycle: Policy-makers be prepared,†Gov. Inf. Q., vol. 35, no. 4, hal. 99–105, 2018.

V. Govender, P., & Sivakumar, “Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980-2019),†Atmos. Pollut. Res., vol. 11, no. 1, hal. 40–56, 2020.

S. Fränti, P., & Sieranoja, “K-means properties on six clustering benchmark datasets,†Appl. Intell., vol. 48, hal. 4743–4759, 2018.

Anne-Laure Mention, Digital Innovation: Harnessing the Value of Open Data (Open Innovation: Bridging Theory and Practice). WSPC, 2019.

S. M. S. Ahmed, M., Seraj, R., & Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,†Electronics, vol. 9, no. 8, 2020.

F. A. Rodriguez, M. Z., Comin, C. H., Casanova, D., Bruno, O. M., Amancio, D. R., Costa, L. D. F., & Rodrigues, “Clustering algorithms: A comparative approach,†PLoS One, vol. 14, no. 1, 2019.

S. S. Irfiani, E., & Rani, “Algoritma K-Means Clustering untuk Menentukan Nilai Gizi Balita,†J. Sist. dan Teknol. Inf, vol. 6, no. 4, hal. 161, 2018.

A. Bouyer, A., & Hatamlou, “An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms,†Appl. Soft Comput., vol. 67, hal. 172–182, 2018.

A. Fahim, “K and starting means for k-means algorithm,†J. Comput. Sci., vol. 55, 2021, doi: Journal of Computational Science.

M. J. Rezaee, M. Eshkevari, M. Saberi, dan O. Hussain, “GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game,†Knowledge-Based Syst., vol. 213, 2021, doi: https://doi.org/10.1016/j.knosys.2020.106672.

Y. A. Elnaga dan S. Nasr, “K-means cluster interactive algorithm-based evolutionary approach for solving bilevel multi-objective programming problems,†Alexandria Eng. J., vol. 61, no. 1, hal. 811–827, 2022, doi: https://doi.org/10.1016/j.aej.2021.04.098.