Optimizing Pigeon-Inspired Algorithm to Enhance Intrusion Detection System Performance Internet of Things Environments

Fajar Ratnawati - Politeknik Negeri Bengkalis, 28711, Indonesia
Apri Siswanto - Universitas Islam Riau, Indonesia
- Jaroji - Politeknik Negeri Bengkalis, 28711, Indonesia
Akmar Effendy - Universitas Islam Riau, Indonesia
Agus Tedyyana - Politeknik Negeri Bengkalis, 28711, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.30630/joiv.7.4.01724

Abstract


Intrusion Detection Systems (IDS) are crucial in maintaining network security and safeguarding sensitive information against external and internal threats. This study proposes a novel approach by utilizing a Pigeon-Inspired Algorithm optimized with the Hyperbolic Tangent Function (Tanh) function to enhance the performance of IDS in threat detection specifically tailored for Internet of Things (IoT) environments. We aim to create a more robust solution for optimizing intrusion detection systems by integrating the efficient and effective Tanh function into the Pigeon-Inspired Algorithm. The proposed method is evaluated on three widely-used datasets in the field of IDS: NSL-KDD, CICIDS2017, and CSE-CIC-IDS2018. Experimental results demonstrate that integrating the Tanh function into the Pigeon-Inspired Algorithm significantly improves the performance of the intrusion detection system. Our method achieves higher accuracy, True Positive Rate (TPR), and F1-score while reducing the False Positive Rate (FPR) compared to traditional Pigeon-Inspired Algorithms and several other optimization algorithms. The Pigeon-Inspired Algorithm optimized with the Tanh function offers an efficient and effective solution for enhancing intrusion detection system performance, specifically in Internet of Things environments. This method holds great potential for application in diverse network environments, bolstering information security and safeguarding systems from evolving cybersecurity threats. By extending the applicability and effectiveness of the Pigeon-Inspired Algorithm optimized with the Tanh function, researchers can contribute to developing more comprehensive and robust security solutions, addressing the ever-evolving landscape of IoT-based cybersecurity threats.

Keywords


Intrusion detection system; machine learning; feature selection; pigeon-inspired; hyperbolic tangent function

Full Text:

PDF

References


A. Aljumah, “IoT-based intrusion detection system using convolution neural networks,” PeerJ Computer Science, vol. 7, p. e721, Sep. 2021, doi: 10.7717/peerj-cs.721.

S. Otoum, B. Kantarci, and H. T. Mouftah, “On the Feasibility of Deep Learning in Sensor Network Intrusion Detection,” IEEE Networking Letters, vol. 1, no. 2, pp. 68–71, Jun. 2019, doi:10.1109/lnet.2019.2901792.

G. Vaidya, A. Nambi, T. V. Prabhakar, V. Kumar T, and S. Sudhakara, “IoT-ID: A Novel Device-Specific Identifier Based on Unique Hardware Fingerprints,” 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI), Apr. 2020, doi: 10.1109/iotdi49375.2020.00026.

I. Ahmed Khan, D. Pi, A. K. Bhatia, N. Khan, W. Haider, and A. Wahab, “Generating realistic IoT‐based IDS dataset centred on fuzzy qualitative modelling for cyber‐physical systems,” Electronics Letters, vol. 56, no. 9, pp. 441–444, Apr. 2020, doi: 10.1049/el.2019.4158.

A. Alhowaide, I. Alsmadi, and J. Tang, “Ensemble Detection Model for IoT IDS,” Internet of Things, vol. 16, p. 100435, Dec. 2021, doi:10.1016/j.iot.2021.100435.

A. Kim, M. Park, and D. H. Lee, “AI-IDS: Application of Deep Learning to Real-Time Web Intrusion Detection,” IEEE Access, vol. 8, pp. 70245–70261, 2020, doi: 10.1109/access.2020.2986882.

R. Ahmad, I. Alsmadi, W. Alhamdani, and L. Tawalbeh, “A comprehensive deep learning benchmark for IoT IDS,” Computers & Security, vol. 114, p. 102588, Mar. 2022, doi:10.1016/j.cose.2021.102588.

A. Y. Hussein, P. Falcarin, and A. T. Sadiq, “Enhancement performance of random forest algorithm via one hot encoding for IoT IDS,” Periodicals of Engineering and Natural Sciences (PEN), vol. 9, no. 3, p. 579, Aug. 2021, doi: 10.21533/pen.v9i3.2204.

O. O. Akinola, A. E. Ezugwu, J. O. Agushaka, R. A. Zitar, and L. Abualigah, “Multiclass feature selection with metaheuristic optimization algorithms: a review,” Neural Computing and Applications, vol. 34, no. 22, pp. 19751–19790, Aug. 2022, doi:10.1007/s00521-022-07705-4.

“Stacked Ensemble-IDS Using NSL-KDD Dataset,” Journal of Pharmaceutical Negative Results, vol. 13, no. SO3, Jan. 2022, doi:10.47750/pnr.2022.13.s03.057.

D. Protić, “Review of KDD Cup ’99, NSL-KDD and Kyoto 2006+ datasets,” Vojnotehnicki glasnik, vol. 66, no. 3, pp. 580–596, 2018, doi: 10.5937/vojtehg66-16670.

R. Panigrahi and S. Borah, “A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems,” International Journal of Engineering and Technology(UAE), vol. 7, no. 3.24 Special Issue 24, 2018.

A. Boukhamla and J. C. Gaviro, “CICIDS2017 dataset: performance improvements and validation as a robust intrusion detection system testbed,” International Journal of Information and Computer Security, vol. 16, no. 1/2, p. 20, 2021, doi: 10.1504/ijics.2021.117392.

Z. K. Maseer, R. Yusof, N. Bahaman, S. A. Mostafa, and C. F. M. Foozy, “Benchmarking of Machine Learning for Anomaly Based Intrusion Detection Systems in the CICIDS2017 Dataset,” IEEE Access, vol. 9, pp. 22351–22370, 2021, doi:10.1109/access.2021.3056614.

A. Aldallal, “Toward Efficient Intrusion Detection System Using Hybrid Deep Learning Approach,” Symmetry, vol. 14, no. 9, p. 1916, Sep. 2022, doi: 10.3390/sym14091916.

J.-S. Pan, A.-Q. Tian, S.-C. Chu, and J.-B. Li, “Improved binary pigeon-inspired optimization and its application for feature selection,” Applied Intelligence, vol. 51, no. 12, pp. 8661–8679, Apr. 2021, doi:10.1007/s10489-021-02302-9.

A. L. Bolaji, F. Z. Okwonu, P. B. Shola, B. S. Balogun, and O. D. Adubisi, “A Modified Binary Pigeon-Inspired Algorithm for Solving the Multi-dimensional Knapsack Problem,” Journal of Intelligent Systems, vol. 30, no. 1, pp. 90–103, Jul. 2020, doi: 10.1515/jisys-2018-0450.

A.-Q. Tian, S.-C. Chu, J.-S. Pan, and Y. Liang, “A Novel Pigeon-Inspired Optimization Based MPPT Technique for PV Systems,” Processes, vol. 8, no. 3, p. 356, Mar. 2020, doi: 10.3390/pr8030356.

Q. Feng et al., “Resilience optimization for multi-UAV formation reconfiguration via enhanced pigeon-inspired optimization,” Chinese Journal of Aeronautics, vol. 35, no. 1, pp. 110–123, Jan. 2022, doi:10.1016/j.cja.2020.10.029.

H. Qiu and H. Duan, “A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles,” Information Sciences, vol. 509, pp. 515–529, Jan. 2020, doi:10.1016/j.ins.2018.06.061.

B. H. Wang, D. B. Wang, and Z. A. Ali, “A Cauchy mutant pigeon-inspired optimization–based multi-unmanned aerial vehicle path planning method,” Measurement and Control, vol. 53, no. 1–2, pp. 83–92, Jan. 2020, doi: 10.1177/0020294019885155.

Z. Zhao et al., “Hierarchical Pigeon-Inspired Optimization-Based MPPT Method for Photovoltaic Systems Under Complex Partial Shading Conditions,” IEEE Transactions on Industrial Electronics, vol. 69, no. 10, pp. 10129–10143, Oct. 2022, doi:10.1109/tie.2021.3137595.

A.-Q. Tian, S.-C. Chu, J.-S. Pan, H. Cui, and W.-M. Zheng, “A Compact Pigeon-Inspired Optimization for Maximum Short-Term Generation Mode in Cascade Hydroelectric Power Station,” Sustainability, vol. 12, no. 3, p. 767, Jan. 2020, doi:10.3390/su12030767.

A. F. Jabbar and I. J. Mohammed, “BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 1, p. 377, Jan. 2021, doi:10.11591/ijeecs.v21.i1.pp377-390.

A. Alsahaf, N. Petkov, V. Shenoy, and G. Azzopardi, “A framework for feature selection through boosting,” Expert Systems with Applications, vol. 187, p. 115895, Jan. 2022, doi:10.1016/j.eswa.2021.115895.

M. Mera-Gaona, D. M. López, R. Vargas-Canas, and U. Neumann, “Framework for the Ensemble of Feature Selection Methods,” Applied Sciences, vol. 11, no. 17, p. 8122, Sep. 2021, doi:10.3390/app11178122.

Z. Yang and B. Y. C. Hon, “An Improved Modified Extended tanh-Function Method,” Zeitschrift für Naturforschung A, vol. 61, no. 3–4, pp. 103–115, Apr. 2006, doi: 10.1515/zna-2006-3-401.

X. Wang, J. Wu, Y. Wang, and C. Chen, “Extended Tanh-Function Method and Its Applications in Nonlocal Complex mKdV Equations,” Mathematics, vol. 10, no. 18, p. 3250, Sep. 2022, doi:10.3390/math10183250.

E. H.M. Zahran and M. M.A. Khater, “Modified extended tanh-function method and its applications to the Bogoyavlenskii equation,” Applied Mathematical Modelling, vol. 40, no. 3, pp. 1769–1775, Feb. 2016, doi: 10.1016/j.apm.2015.08.018.

S. A. Dukhnovsky, “The tanh-function method and the (G’/G)-expansion method for the kinetic McKean system,” Differencialnie Uravnenia i Protsesy Upravlenia, vol. 2021, no. 2, 2021.

M. S. Ahmed, A. A. S. Zaghrout, and H. M. Ahmed, “Travelling wave solutions for the doubly dispersive equation using improved modified extended tanh-function method,” Alexandria Engineering Journal, vol. 61, no. 10, pp. 7987–7994, Oct. 2022, doi: 10.1016/j.aej.2022.01.057.

S. A. Dukhnovsky, “A self-similar solution and the tanh-function method for the kinetic Carleman system,” Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1(98), pp. 99–110, Jul. 2022, doi: 10.56415/basm.y2022.i1.p99.

U. Sadiya, M. Inc, M. A. Arefin, and M. H. Uddin, “Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine-Gordon equations through extended tanh-function approach,” Journal of Taibah University for Science, vol. 16, no. 1, pp. 594–607, Jun. 2022, doi: 10.1080/16583655.2022.2089396.

K. K. Ahmed, N. M. Badra, H. M. Ahmed, and W. B. Rabie, “Soliton Solutions and Other Solutions for Kundu–Eckhaus Equation with Quintic Nonlinearity and Raman Effect Using the Improved Modified Extended Tanh-Function Method,” Mathematics, vol. 10, no. 22, p. 4203, Nov. 2022, doi: 10.3390/math10224203.

A. Devarakonda, N. Sharma, P. Saha, and S. Ramya, “Network intrusion detection: a comparative study of four classifiers using the NSL-KDD and KDD’99 datasets,” Journal of Physics: Conference Series, vol. 2161, no. 1, p. 012043, Jan. 2022, doi: 10.1088/1742-6596/2161/1/012043.

S. Choudhary and N. Kesswani, “Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 Datasets using Deep Learning in IoT,” Procedia Computer Science, vol. 167, pp. 1561–1573, 2020, doi:10.1016/j.procs.2020.03.367.

L. Dhanabal and S. P. Shantharajah, “A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms,” International Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 6, 2015.

B. Samatha, T. Syamsundararao, and N. Karyemsetty, “Deep Learning Based Intrusion Prevention System in Vehicular Network,” Review of Computer Engineering Research, vol. 9, no. 3, pp. 169–180, Sep. 2022, doi: 10.18488/76.v9i3.3145.

A. A. Mamun, S. N. Ananna, P. P. Gharami, T. An, and Md. Asaduzzaman, “The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations,” Results in Physics, vol. 41, p. 105969, Oct. 2022, doi: 10.1016/j.rinp.2022.105969.

L. Md. B. Alam, X. Jiang, and A.-A.- Mamun, “Exact and explicit traveling wave solution to the time-fractional phi-four and (2+1) dimensional CBS equations using the modified extended tanh-function method in mathematical physics,” Partial Differential Equations in Applied Mathematics, vol. 4, p. 100039, Dec. 2021, doi:10.1016/j.padiff.2021.100039.