Convolutional Neural Network Model for Sex Determination Using Femur Bones

Dewi Nasien - Institut Bisnis dan Teknologi Pelita Indonesia, Sukajadi, Pekanbaru, 28127, Indonesia
M. Hasmil Adiya - Institut Bisnis dan Teknologi Pelita Indonesia, Sukajadi, Pekanbaru, 28127, Indonesia
Iis Afrianty - Universitas Islam Negeri Sultan Syarif Kasim Riau, Simpang Baru, Pekanbaru, 28293, Indonesia
Mochammad Farkhan - Universitas Riau, Simpang Baru, Pekanbaru, 28293, Indonesia
Rio Juan Hendri Butar-Butar - Universitas Riau, Simpang Baru, Pekanbaru, 28293, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.30630/joiv.7.4.01711

Abstract


Forensic anthropology is the critical discipline that applies physical anthropology in forensic education. One valuable application is the identification of the biological profile. However, in the aftermath of significant disasters, the identification of human skeletons becomes challenging due to their incompleteness and difficulty determining sex. Researchers have explored alternative indicators to address this issue, including using the femur bone as a reliable sex identifier. The development of artificial intelligence has created a new field called deep learning that has excelled in various applications, including sex determination using the femur bone. In this study, we employ the Convolutional Neural Network (CNN) method to identify the sex of human skeleton shards. A CNN model was trained on 91 CT-scan results of femur bones collected from Universiti Teknologi Malaysia, comprising 50 female and 41 male patients. The data pre-processing involves cropping, and the dataset is divided into training and validation subsets with varying percentages (60:4, 70:30, and 80:20). The constructed CNN architecture exhibits exceptional accuracy, achieving 100% accuracy in both training and validation data. Moreover, the precision, recall, and F1 score attained a perfect score of 1, validating the model's precise predictions. The results of this research demonstrate excellent accuracy, confirming the reliability of the developed model for sex determination. These findings demonstrate that using deep learning for sex determination is a novel and promising approach. The high accuracy of the CNN model provides a valuable tool for sex determination in challenging scenarios. This could have important implications for forensic investigations and help identify victims of disasters and other crimes.


Keywords


CNN; Femur; Forensic; Sex Determination

Full Text:

PDF

References


K. R. Burns, Forensic anthropology training manual. Routledge, 2015.

A. M. Christensen, N. V Passalacqua, and E. J. Bartelink, Forensic anthropology: current methods and practice. Academic Press, 2019.

I. Afrianty, D. Nasien, M. R. A. Kadir, and H. Haron, “Determination of gender from pelvic bones and patella in forensic anthropology: A comparison of classification techniques,” Proc. - 1st Int. Conf. Artif. Intell. Model. Simulation, AIMS 2013, no. November, pp. 3–7, 2014, doi: 10.1109/AIMS.2013.9.

I. Afrianty, D. Nasien, M. R. A. Kadir, and H. Haron, Back-Propagation Neural Network for Gender Determination in Forensic Anthropology. Springer, Cham, 2015.

T. Mello-Gentil and V. Souza-Mello, “Contributions of anatomy to forensic sex estimation: focus on head and neck bones,” Forensic Sci. Res., vol. 7, no. 1, pp. 11–23, 2022.

F. Curate, “The Estimation of Sex of Human Skeletal Remains in the Portuguese Identified Collections: History and Prospects,” Forensic Sci., vol. 2, no. 1, pp. 272–286, 2022, doi: 10.3390/forensicsci2010021.

W. Jilala, P. Ng’walali, D. Russa, and P. Bushozi, “Sexing contemporary Tanzanian skeletonized remains using skull morphology: A test of the walker sex assessment method,” Forensic Sci. Int. Reports, vol. 3, no. April, p. 100195, 2021, doi: 10.1016/j.fsir.2021.100195.

K. Imaizumi et al., “Development of a sex estimation method for skulls using machine learning on three-dimensional shapes of skulls and skull parts,” Forensic Imaging, vol. 22, p. 200393, 2020.

A. Bertsatos, M.-E. Chovalopoulou, J. Brůžek, and Š. Bejdová, “Advanced procedures for skull sex estimation using sexually dimorphic morphometric features,” Int. J. Legal Med., vol. 134, pp. 1927–1937, 2020.

Y. Cao et al., “Use of deep learning in forensic sex estimation of virtual pelvic models from the Han population,” Forensic Sci. Res., vol. 0, no. 0, pp. 1–10, 2021, doi: 10.1080/20961790.2021.2024369.

D. Carvallo and R. Retamal, “Sex estimation using the proximal end of the femur on a modern Chilean sample,” Forensic Sci. Int. Reports, vol. 2, no. July 2019, p. 100077, 2020, doi: 10.1016/j.fsir.2020.100077.

N. K. Chauhan and K. Singh, “A review on conventional machine learning vs deep learning,” 2018 Int. Conf. Comput. Power Commun. Technol. GUCON 2018, pp. 347–352, 2019, doi: 10.1109/GUCON.2018.8675097.

F. Curate, C. Umbelino, A. Perinha, C. Nogueira, A. M. Silva, and E. Cunha, “Sex determination from the femur in Portuguese populations with classical and machine-learning classifiers,” J. Forensic Leg. Med., vol. 52, pp. 75–81, 2017, doi: 10.1016/j.jflm.2017.08.011.

Y. Li et al., “Forensic age estimation for pelvic X-ray images using deep learning,” Eur. Radiol., vol. 29, pp. 2322–2329, 2019.

L. Q. Peng et al., “Comparison of three CNN models applied in bone age assessment of pelvic radiographs of adolescents,” Fa Yi Xue Za Zhi, vol. 36, no. 5, pp. 622–630, 2020.

E. M. Schulz, “Sex vs gender in a forensic anthropological analysis,” 2021.

F. Chiba et al., “Sex estimation based on femoral measurements using multidetector computed tomography in cadavers in modern Japan,” Forensic Sci. Int., vol. 292, pp. 262-e1, 2018.

M. C. Cuzzullin et al., “Validation of anthropological measures of the human femur for sex estimation in Brazilians,” Aust. J. Forensic Sci., vol. 54, no. 1, pp. 61–74, 2022.

F. Curate et al., “A method for sex estimation using the proximal femur,” Forensic Sci. Int., vol. 266, pp. 579.e1-579.e7, 2016, doi: 10.1016/j.forsciint.2016.06.011.

F. Curate, A. Albuquerque, I. Ferreira, and E. Cunha, “Sex estimation with the total area of the proximal femur: A densitometric approach,” Forensic Sci. Int., vol. 275, pp. 110–116, 2017.

E. Alpaydin, Introduction to machine learning. MIT press, 2020.

J. Bewes, A. Low, A. Morphett, F. D. Pate, and M. Henneberg, “Artificial intelligence for sex determination of skeletal remains: Application of a deep learning artificial neural network to human skulls,” J. Forensic Leg. Med., vol. 62, pp. 40–43, 2019, doi: 10.1016/j.jflm.2019.01.004.

N. Shahi, A. K. Shahi, R. Phillips, G. Shirek, D. M. Lindberg, and S. L. Moulton, “Using deep learning and natural language processing models to detect child physical abuse,” J. Pediatr. Surg., vol. 56, no. 12, pp. 2326–2332, 2021.

X. Chen, J. Li, Y. Zhang, Y. Lu, and S. Liu, “Automatic feature extraction in X-ray image based on deep learning approach for determination of bone age,” Futur. Gener. Comput. Syst., vol. 110, pp. 795–801, 2020.

H.-C. Lee et al., “Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery,” J. Clin. Med., vol. 7, no. 10, p. 322, 2018.

H. Lee et al., “Fully automated deep learning system for bone age assessment,” J. Digit. Imaging, vol. 30, pp. 427–441, 2017.

R. Saric et al., “Dental age assessment based on CBCT images using machine learning algorithms,” Forensic Sci. Int., vol. 334, p. 111245, 2022.

E. Çallı, E. Sogancioglu, B. van Ginneken, K. G. van Leeuwen, and K. Murphy, “Deep learning for chest X-ray analysis: A survey,” Med. Image Anal., vol. 72, p. 102125, 2021.

H. Seo, J. Hwang, Y.-H. Jung, E. Lee, O. H. Nam, and J. Shin, “Deep focus approach for accurate bone age estimation from lateral cephalogram,” J. Dent. Sci., vol. 18, no. 1, pp. 34–43, 2023.

T. D. Bui, J.-J. Lee, and J. Shin, “Incorporated region detection and classification using deep convolutional networks for bone age assessment,” Artif. Intell. Med., vol. 97, pp. 1–8, 2019.

T. Y. Marroquin, S. Karkhanis, S. I. Kvaal, S. Vasudavan, E. Kruger, and M. Tennant, “Age estimation in adults by dental imaging assessment systematic review,” Forensic Sci. Int., vol. 275, pp. 203–211, 2017.

O. N. Hassan, M. J. Menten, H. Bogunovic, and U. Schmidt-erfurth, “DEEP LEARNING PREDICTION OF AGE AND SEX FROM OPTICAL COHERENCE TOMOGRAPHY,” 2021 IEEE 18th Int. Symp. Biomed. Imaging, pp. 238–242, 2021.

B. Liang et al., “A deep automated skeletal bone age assessment model via region-based convolutional neural network,” Futur. Gener. Comput. Syst., vol. 98, pp. 54–59, 2019, doi: 10.1016/J.FUTURE.2019.01.057.

T. J. Brinker et al., “Skin cancer classification using convolutional neural networks: Systematic review,” J. Med. Internet Res., vol. 20, no. 10, pp. 1–8, 2018, doi: 10.2196/11936.

T. Rahman and M. S. Islam, MRI Brain Tumor Classification Using Deep Convolutional Neural Network. Springer Singapore, 2022.

F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “Breast Cancer Histopatological Image Classification using Convolutional Neural Network,” 2016 Int. Jt. Conf. Neural Networks, pp. 2560–2567, 2016.

A. T. Balarabe and I. Jordanov, “Food Image Classification With Convolutional Neural Network,” Int. Geosci. Remote Sens. Symp., vol. 3, pp. 5985–5988, 2021, doi: 10.1109/IGARSS47720.2021.9555015.

Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classification with convolutional neural network,” 2014 13th Int. Conf. Control Autom. Robot. Vision, ICARCV 2014, vol. 2014, no. December, pp. 844–848, 2014, doi: 10.1109/ICARCV.2014.7064414.

P. Kim, MATLAB deep learning : with machine learning, neural networks and artificial intelligence. New York: NY: Apress, 2017.

N. Saranya, D. Karthika Renuka, and J. N. Kanthan, “Brain Tumor Classification Using Convolution Neural Network,” J. Phys. Conf. Ser., vol. 1916, no. 1, pp. 1–5, 2021, doi: 10.1088/1742-6596/1916/1/012206.